Hydroxyapatite-activated seaweed biochar for enhanced remediation of fluoride contaminated soil at various pH ranges.

Loading...
Thumbnail Image

Date

2022-12-10

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd.

Abstract

This study investigated the defluoridation efficiency of hydroxyapatite-activated seaweed (Eucheuma Cottonii) biochar (HSB) at various soil pH ranges (3–11) while monitoring the impact of contact time (30 min - 2.5 h), adsorbent dosage (0.1–0.5 g) as well as the initial fluoride concentration and compare its performance to its respective seaweed biochar (SB). Activation of SB with the hydroxyapatite lead to a shift in its point-zero-charge (pHPZC) from 6 to 7.4 broadening its defluoridation pH range from a solitary 5 to amid 3 through 11. The fluoride adsorption mechanism was found to follow both Langmuir (R2 = 0.956) and Freundlich (R2 = 0.942) isotherm models with a maximum defluoridation capacity of 3.03 mg/g equivalent to the defluoridation efficiency of 79%. This is accounted to the existence of soil ions, SB active sites, and the attached hydroxyapatite, as fluoride adsorption sites each exhibiting a dissimilar fluoride removal mechanism. Therefore, the HSB could be a promising adsorbent for fluoride removal in the fluoride contaminated agricultural soils of inclusive pH ranges.

Sustainable Development Goals

This research article was published in the Environmental Advances Volume 11, 2022

Keywords

Fluoride, Hydroxyapatite, Remediation, Seaweed biochar, Soil

Citation