• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Impact of Antioxidant Additives on the Engine Performance and Exhaust Emissions Using Biodiesel made from Jatropha Oil of Eastern Africa Origin

    Thumbnail
    View/Open
    Full text (326.1Kb)
    Date
    2016
    Author
    Kivevele, Thomas
    Huan, Zhongjie
    Lukacs, Kristof
    Bereczky, Ákos
    Mbarawa, Makame
    Metadata
    Show full item record
    Abstract
    Biodiesel’s chemical nature makes it more susceptible to oxidation in comparison to mineral diesel. Biodiesels are doped with antioxidants to increase oxidation stability for long term storage. However, it is quite possible that these additives may affect fuel related properties of biodiesel such as cetane number and kinematic viscosity and also the performance of engine and exhaust emissions. Therefore, this study investigated the effects of antioxidant on the oxidation stability, cetane number and kinetic viscosity of biodiesel made from jatropha oil of Eastern Africa origin. Also, the influence on the performance and exhaust emissions of a four cylinder turbocharged direct injection (TDI) diesel engine. Antioxidant 1, 2, 3 trihydroxy benzene (Pyrogallol, PY), as the most effective antioxidant based on the earlier work of the authors was mixed with the produced Jatropha Oil Methyl Ester (JOME) at different concentrations to improve the oxidation stability. The results showed that, the oxidation stability of JOME increased with the increase of PY dosage. Also, cetane number slightly increased with additional of antioxidant whereas kinetic viscosity was observed to decrease with PY dosage. The brake specific fuel consumption (BSFC) of JOME with antioxidants decreased more than that without antioxidants, but both were higher than that of diesel and diesel/biodiesel blends. No significant effects were observed on the exhaust emissions of a diesel engine running on biodiesel (JOME) dosed with antioxidant PY.
    URI
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/833
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV