• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Desalination using capacitive deionization at constant current

    Thumbnail
    View/Open
    Abstract (5.571Kb)
    Date
    2013-11-15
    Author
    Jande, Yusufu
    Kim, Woo-Seung
    Metadata
    Show full item record
    Abstract
    Capacitive deionization (CDI) is an emerging technology of desalinating brackish/seawater to attain freshwater. The process involves polarization of the two electrodes electrically using direct current; thus the cations and anions are attracted towards the oppositely charged electrode. So far most of the experiments/models involve the charging of the CDI cell at constant voltage. However, charging at constant voltage leads to having a shorter time in a given CDI cell cycle when the system has reached its lowest effluent concentration. This is undesired phenomena. To overcome this problem desalination process is preferred to be performed at constant current. The dynamic response model to describe the variation of the effluent concentration with time under constant current charging has been derived and validated. Also, the effect of processing parameters such as applied current, flow rate, CDI cell dead volume, and capacitance on the lowest effluent concentration is analyzed.
    URI
    https://doi.org/10.1016/j.desal.2013.08.023
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/712
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV