• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Fish Swim Bladder-Derived Porous Carbon for Defluoridation at Potable Water pH

    Thumbnail
    View/Open
    Full text (2.299Mb)
    Date
    2016-10-25
    Author
    Karuga, John
    Jande, Yusufu
    Kim, Hee
    King’ondu, Cecil
    Metadata
    Show full item record
    Abstract
    The levels of fluoride in various ground water sources in East Africa are above the World Health Organization upper limit of 1.5 mg/L. Research on diverse defluoridation technologies has proven that adsorption stands out as an affordable, efficient, and facile technology. Fish swim bladder-derived porous carbon (FBPC) activated by KOH and surface oxidized by nitric acid was successfully investigated as an adsorbent for defluoridation at portable water pH. The FBPC was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-raydiffraction (XRD) and energy dispersive spectroscopy (EDS). Batch methods were used to study physiochemical parameters viz., initial fluoride concentration, temperature, adsorbate dosage, contact time and pH. Freundlich, Temkin, Langmuir and Dubinin-Radushkevich isotherms were plotted and analyzed to understand the adsorption process. Bangham, Weber Morris, pseudo first and second-order models were used to elucidate the kinetics of adsorption. Optimal conditions for fluoride removal were found to be: pH of 6, FBPC adsorbent dose of 5.0 g/L and contact time of 50 min. Flouride adsorption followed pseudo second-order kinetic model and Langmuir isotherm best describes the adsorption process.
    URI
    http://dx.doi.org/10.4236/aces.2016.64044
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/701
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV