• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Methylammonium tin iodide perovskite: structural, electronic and thermodynamic properties by a DFT study with different exchange–correlation functionals

    Thumbnail
    View/Open
    Full text (5.723Mb)
    Date
    2020-03-20
    Author
    Paschal, Catherine
    Pogrebnoi, Alexander M.
    Pogrebnaya, Tatiana P.
    Seriani, Nicola
    Metadata
    Show full item record
    Abstract
    Lead-free perovskites have drawn much attention of researchers in the field of electronics and photovoltaics due to the toxicity issue of the lead halide perovskites. The methylammonium tin iodide CH3NH3SnI3 amongst others has become a viable alternative due to its eco-friendliness, as well as narrower bandgap and its wider visible absorption spectrum. In this study different theoretical approaches were employed in investigating the structural, electronic and thermodynamic properties of the orthorhombic phase (O-phase) of the CH3NH3SnI3 perovskite. By using the first-principle calculations with the density functional theory, a direct bandgap was determined at gamma symmetry points with three exchange–correlation functionals: PBE 1.12 eV, PBEsol 0.98 eV, and LDA 0.46 eV. Based on the comparison of lattice constants and bandgaps with the experimental values, the best performance resulted from PBE. The decomposition of the CH3NH3SnI3 perovskite into solid state products, CH3NH3I and SnI2, was considered; the enthalpy of the reaction ΔrH° (0 K) = 37 kJ mol−1 and enthalpy of formation of the O-phase perovskite ΔfH° (CH3NH3SnI3, 0 K) =  − 390 kJ mol−1 were evaluated, indicating the stability of the O-phase CH3NH3SnI3 at low temperature, in agreement with experimental findings.
    URI
    https://doi.org/10.1007/s42452-020-2549-y
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/687
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV