• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Origin and mechanisms of high salinity in Hombolo Dam and groundwater in Dodoma municipality Tanzania, revealed

    Thumbnail
    View/Open
    Full text (3.298Mb)
    Date
    2017-05-12
    Author
    Shemsanga, Ceven
    Muzuka, Afred
    Martz, Lawrence
    Komakech, Hans
    Elisante, Eliapenda
    Kisaka, Marry
    Ntuza, Cosmas
    Metadata
    Show full item record
    Abstract
    The Hombolo dam (HD), in central Tanzania, is a shallow reservoir characterized by high salinity that limits its use for human activities. The origin of the salinity, mechanisms of reaching and concentrating in the dam remain unclear. These were assessed using hydrogeochemical facies, water type evolutions and mapping. The source of HD salinity was identified to be shallow groundwater (SG) and runoff from a seasonal floodplain with NaCl-rich lithological materails, along Little Kinyasungwe River that feeds the dam. The NaCl-rich lithological units, about 5–7 km upstream of the dam, were highly concentrated with NaCl to the extent that the local community was commercially separating table salt from them. The physicochemical parameters from these NaCl-rich lithological materials were well represented in HD and nearby groundwater sources, which suggests active water interactions. Water type evolution and surface hydrology assessments clearly showed that SG in the salty-floodplain was influenced by evaporation (ET) and was periodically carried to the HD. Clearly; HD water had high chemical similarity with the nearby SG. This agrees with previous studies that HD is partly fed by the local aquifer. However, this is the first attempt at mapping its physical origin. The origin of HD salinity was further supported by the spatial distribution of electrical conductivity (EC), where very high EC (up to 21,230 μScm−1) was recorded in SG within the NaCl-rich lithological unit while water sources far away from the NaCl-rich materials had much lower EC values. Thus, the study disagrees with previous conclusions that HD salinity was sorely due to high dam surface ET but is primarily due to geological reasons. Comparisons of HD with a nearby Matumbulu dam (MD), another earthen dam in climatologically similar settings, reveals that MD water was less saline/mineralised. This further shows that HD high salinity is most likely a geologic phenomenon, but local climatic factors, namely high ET, decreasing rainfall and warming trends are likely to have concentrated the salts further. Although HD is widely/ideally used for grape vine irrigation, it was clearly revealed that its prolonged usage would potentially affect the soil and grape productivity due to high salinity.
    URI
    https://doi.org/10.1007/s13201-017-0569-6
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/664
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV