Show simple item record

dc.contributor.authorShemsanga, Ceven
dc.contributor.authorMuzuka, Afred
dc.contributor.authorMartz, Lawrence
dc.contributor.authorKomakech, Hans
dc.contributor.authorElisante, Eliapenda
dc.contributor.authorKisaka, Marry
dc.contributor.authorNtuza, Cosmas
dc.date.accessioned2020-03-20T12:04:04Z
dc.date.available2020-03-20T12:04:04Z
dc.date.issued2017-05-12
dc.identifier.urihttps://doi.org/10.1007/s13201-017-0569-6
dc.identifier.urihttps://dspace.nm-aist.ac.tz/handle/20.500.12479/664
dc.descriptionThis research article published Springer Nature Switzerland AG.,2017en_US
dc.description.abstractThe Hombolo dam (HD), in central Tanzania, is a shallow reservoir characterized by high salinity that limits its use for human activities. The origin of the salinity, mechanisms of reaching and concentrating in the dam remain unclear. These were assessed using hydrogeochemical facies, water type evolutions and mapping. The source of HD salinity was identified to be shallow groundwater (SG) and runoff from a seasonal floodplain with NaCl-rich lithological materails, along Little Kinyasungwe River that feeds the dam. The NaCl-rich lithological units, about 5–7 km upstream of the dam, were highly concentrated with NaCl to the extent that the local community was commercially separating table salt from them. The physicochemical parameters from these NaCl-rich lithological materials were well represented in HD and nearby groundwater sources, which suggests active water interactions. Water type evolution and surface hydrology assessments clearly showed that SG in the salty-floodplain was influenced by evaporation (ET) and was periodically carried to the HD. Clearly; HD water had high chemical similarity with the nearby SG. This agrees with previous studies that HD is partly fed by the local aquifer. However, this is the first attempt at mapping its physical origin. The origin of HD salinity was further supported by the spatial distribution of electrical conductivity (EC), where very high EC (up to 21,230 μScm−1) was recorded in SG within the NaCl-rich lithological unit while water sources far away from the NaCl-rich materials had much lower EC values. Thus, the study disagrees with previous conclusions that HD salinity was sorely due to high dam surface ET but is primarily due to geological reasons. Comparisons of HD with a nearby Matumbulu dam (MD), another earthen dam in climatologically similar settings, reveals that MD water was less saline/mineralised. This further shows that HD high salinity is most likely a geologic phenomenon, but local climatic factors, namely high ET, decreasing rainfall and warming trends are likely to have concentrated the salts further. Although HD is widely/ideally used for grape vine irrigation, it was clearly revealed that its prolonged usage would potentially affect the soil and grape productivity due to high salinity.en_US
dc.language.isoenen_US
dc.publisherSpringer Nature Switzerland AG.en_US
dc.subjectHombolo damen_US
dc.subjectGroundwateren_US
dc.titleOrigin and mechanisms of high salinity in Hombolo Dam and groundwater in Dodoma municipality Tanzania, revealeden_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record