• Login
    View Item 
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative approach of analyzing data uncertainty in parameter estimation for a Lumpy Skin Disease model

    Thumbnail
    View/Open
    Full text (5.006Mb)
    Date
    2025-01-20
    Author
    Renald, Edwiga
    Amadi, Miracle
    Haario, Heikki
    Buza, Joram
    Tchuenche, Jean
    Masanja, Verdiana
    Metadata
    Show full item record
    Abstract
    The livestock industry has been economically affected by the emergence and reemergence of infectious diseases such as Lumpy Skin Disease (LSD). This has driven the interest to research efficient mitigating measures towards controlling the transmission of LSD. Mathematical models of real-life systems inherit loss of information, and consequently, accuracy of their results is often complicated by the presence of uncertainties in data used to estimate parameter values. There is a need for models with knowledge about the confidence of their long-term predictions. This study has introduced a novel yet simple technique for analyzing data uncertainties in compartmental models which is then used to examine the reliability of a deterministic model of the transmission dynamics of LSD in cattle which involves investigating scenarios related to data quality for which the model parameters can be well identified. The assessment of the uncertainties is determined with the help of Adaptive Metropolis Hastings algorithm, a Markov Chain Monte Carlo (MCMC) standard statistical method. Simulation results with synthetic cases show that the model parameters are identifiable with a reasonable amount of synthetic noise, and enough data points spanning through the model classes. MCMC outcomes derived from synthetic data, generated to mimic the characteristics of the real dataset, significantly surpassed those obtained from actual data in terms of uncertainties in identifying parameters and making predictions. This approach could serve as a guide for obtaining informative real data, and adapted to target key interventions when using routinely collected data to investigate long-term transmission dynamic of a disease.
    URI
    https://doi.org/10.1016/j.cmpbup.2025.100178
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2953
    Collections
    • Research Articles [LISBE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV