• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Porous carbon derived from Artocarpus heterophyllus peels for capacitive deionization electrodes

    Thumbnail
    View/Open
    JA_MEWES_2019 (3).pdf (112.7Kb)
    Date
    2019
    Author
    Elisadiki, Joyce
    Jande, Yusufu
    Machunda, Revocatus
    Kibona, Talam
    Metadata
    Show full item record
    Abstract
    Though pristine graphene exhibits remarkable mechanical and electronic properties, many electromechanical applications may come from chemically doping it with heteroatoms. The goal is to tune the atomic lattice and, in turn, modulate the electronic band structure of graphene – that may also affect the mechanical responses of the graphene sheet. Particularly essential for both practical applications and fundamental interests is to characterize the effect of chemical doping on the mechanical properties of graphene. Here we report graphene can maintain a large fraction of its pristine strength and stiffness after substituting boron for carbon atoms. Counter-intuitively, boron doping can ameliorate the brittle nature of the original lattice by deflecting the cracks and enabling damage-tolerant behaviors. We further offer a direct mapping between the Raman spectra and the measured mechanical performances that can show the relationship between doping structure and mechanical properties of graphene. This work offers important implications for the rational design of graphene-based systems that require chemical modifications and also utilize the mechanics of graphene.
    URI
    https://doi.org/10.1016/j.carbon.2019.03.036
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2291
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV