• Login
    View Item 
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Integrating land-water-people connectivity concepts across disciplines for co-design of soil erosion solutions

    Thumbnail
    View/Open
    Full text (10.05Mb)
    Date
    2020-10-02
    Author
    Blake, William
    Kelly, Claire
    Wynants, Maarten
    Patrick, Aloyce
    Lewin, Shaun
    Lawson, Joseph
    Nasolwa, Emmanuel
    Page, Annabel
    Nasseri, Mona
    Marks, Carey
    Gilvear, David
    Mtei, Kelvin
    Munishi, Linus
    Ndakidemi, Patrick
    Metadata
    Show full item record
    Abstract
    Soil resources in East Africa are being rapidly depleted by erosion, threatening food, water and livelihood security in the region. Here we demonstrate how the integration of evidence from natural and social sciences has supported a community-led change in land management in an agro-pastoral community in northern Tanzania. Geospatial analysis of erosion risk and extent (based on a drone survey across a 3.6 km2 sub-catchment) revealed that recently converted land had ca 12-times greater rill density than established slow-forming terraced plots (987 ± 840 m2 ha−1 vs. 79 ± 110 m2 ha−1). Slope length and connectivity between plots were key factors in the development of rill networks rather than slope per se wherein slope length was augmented by weak boundaries between newly formed plots. Erosion evidence, supported by communication of 'process' and 'structural' hydrological connectivity, was integrated with local environmental knowledge within participatory community workshops. Demonstration of the critical time window of hillslope-scale rill erosion risk during early phases of slow-forming terrace development catalysed a community-led tree planting and grass seed sowing programme to mitigate soil erosion by water. This was grounded in an implicit farmer understanding of the need for effective governance mechanisms at both community and District levels, to enable community-led actions to be implemented effectively. The study demonstrates the wide-reaching impact of integrated and interdisciplinary 'upslope-downslope' thinking to tackle global soil erosion challenges.
    URI
    https://doi.org/10.1002/ldr.3791
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2227
    Collections
    • Research Articles [LISBE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV