• Login
    View Item 
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of fruits: A case of mangoes and pineapples

    Thumbnail
    View/Open
    Full text (1.994Mb)
    Date
    2020-06-17
    Author
    Mohammed, Ssemwanga
    Makule, Edna
    Siraj, Kayondo
    Metadata
    Show full item record
    Abstract
    Background This study investigated the effect of traditional and improved solar drying methods on the sensory quality and nutritional composition of the dried fruit products; using mangoes and pineapples, as a case study. The fruits were dried under five solar drying methods namely; open sun drying (OSD), black-cloth shade (BCS), white-cloth shade (WCS), a conventional solar dryer (CSD), and a newly improved solar dryer (ISD) technology. The ISD unit was made of a modified solar concentrator plate containing multiple metallic solar collectors arranged in series. The ISD drying cabinet was also enclosed with a specialized greenhouse cover materials. The drying operations were conducted following a completely randomized design (CRD) experimental procedure. Results The mean drying air temperatures for the OSD, BCS, WCS, CSD and ISD methods were 26.8, 26.7, 24.5, 32.6 and 40.3 °C; respectively. Results showed that the five solar drying methods were capable of retaining the sensory quality and nutritional composition of dried mango and pineapples. The nutritional parameters retained were proximate and mineral content. The sensory quality parameters were taste, aroma, colour and acceptability of the dried fruit products. However, the sensory quality and nutritional content of the fruit products dried under the ISD method were higher than that of the products dried under the CSD method, suggesting an enhanced capacity and superior role of the ISD dryer technology in fruit processing. Conclusion The ISD technology was, therefore, recommended as a better fruit drying method than the traditional solar drying methods. Using the ISD method could be a feasible solution and a strategic pathway to addressing the high post-harvest losses of fruits as well as other perishable fresh produce in East Africa.
    URI
    https://doi.org/10.1016/j.heliyon.2020.e04163
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2225
    Collections
    • Research Articles [LISBE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV