• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Conceptualizing the Fe0/H2O System: A Call for Collaboration to Mark the 30th Anniversary of the Fe0-Based Permeable Reactive Barrier Technology

    Thumbnail
    View/Open
    Full text (394.4Kb)
    Date
    2022-10-03
    Author
    Cao, Viet
    Bakari, Omari
    Tchidjo, Joseline
    Bandjun, Nadège
    Tchoupé, Arnaud
    Gwenzi, Willis
    Njau, Karoli
    Noubactep, Chicgoua
    Metadata
    Show full item record
    Abstract
    Science denial relates to rejecting well-established views that are no longer questioned by scientists within a given community. This expression is frequently connected with climate change and evolution. In such cases, prevailing views are built on historical facts and consensus. For water remediation using metallic iron (Fe0), also known as the remediation Fe0/H2O system, a consensus on electro-chemical contaminant reduction was established during the 1990s and still prevails. Arguments against the reductive transformation concept have been regarded for more than a decade as ‘science denial’. However, is it the prevailing concept that denies the science of aqueous iron corrosion? This article retraces the path taken by our research group to question the reductive transformation concept. It is shown that the validity of the following has been questioned: (i) analytical applications of the arsenazo III method for the determination of uranium, (ii) molecular diffusion as sole relevant mass-transport process in the vicinity of the Fe0 surface in filtration systems, and (iii) the volumetric expansive nature of iron corrosion at pH > 4.5. Item (i) questions the capability of Fe0 to serve as an electron donor for UVI reduction under environmental conditions. Items (ii) and (iii) are inter-related, as the Fe0 surface is permanently shielded by a non-conductive oxide scale acting as a diffusion barrier to dissolved species and a barrier to electrons from Fe0. The net result is that no electron transfer from Fe0 to contaminants is possible under environmental conditions. This conclusion refutes the validity of the reductive transformation concept and calls for alternative theories.
    URI
    https://doi.org/10.3390/w14193120
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2124
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV