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Abstract: Science denial relates to rejecting well-established views that are no longer questioned by
scientists within a given community. This expression is frequently connected with climate change
and evolution. In such cases, prevailing views are built on historical facts and consensus. For
water remediation using metallic iron (Fe0), also known as the remediation Fe0/H2O system, a
consensus on electro-chemical contaminant reduction was established during the 1990s and still
prevails. Arguments against the reductive transformation concept have been regarded for more
than a decade as ‘science denial’. However, is it the prevailing concept that denies the science of
aqueous iron corrosion? This article retraces the path taken by our research group to question the
reductive transformation concept. It is shown that the validity of the following has been questioned:
(i) analytical applications of the arsenazo III method for the determination of uranium, (ii) molecular
diffusion as sole relevant mass-transport process in the vicinity of the Fe0 surface in filtration systems,
and (iii) the volumetric expansive nature of iron corrosion at pH > 4.5. Item (i) questions the capability
of Fe0 to serve as an electron donor for UVI reduction under environmental conditions. Items (ii)
and (iii) are inter-related, as the Fe0 surface is permanently shielded by a non-conductive oxide
scale acting as a diffusion barrier to dissolved species and a barrier to electrons from Fe0. The
net result is that no electron transfer from Fe0 to contaminants is possible under environmental
conditions. This conclusion refutes the validity of the reductive transformation concept and calls for
alternative theories.

Keywords: disinformation; interdisciplinarity; science denial; scientific evidence; water treatment;
zero-valent iron

“In the sciences, people quickly come to regard as their own personal property that
which they have learned and had passed on to them at the universities and academies.
If someone else comes along with new ideas that contradict the Credo and in fact even
threaten to overturn it, then all passions are raised against this threat and no method is left
untried to suppress it. People resist it in every way possible: pretending not to have heard
about it; speaking disparagingly of it, as if it were not even worth the effort of looking into
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the matter. And so a new truth can have a long wait before finally being accepted.” Johann
Wolfgang von Goethe (28 August 1749–22 March 1832).

1. Introduction

Water pollution has become a serious concern worldwide, as various discharges from
agricultural, domestic, and industrial activities are sources and vectors of pollutants [1,2].
The quest for safe drinking water and a clean environment has motivated the use of metallic
iron (Fe0) in water remediation [3,4]. Although Fe0 has been industrially used for water
treatment for some 170 years [5–11], research on using Fe0 for water treatment boomed only
after 1990, and following the advent of Fe0-based subsurface permeable reactive barriers
(Fe0 PRBs) for groundwater remediation [12–14]. In particular, in 1990, Reynolds et al. [15]
fortuitously found that Fe0-based sampling vessels eliminated trichloroethylene and other
halogenated hydrocarbons from polluted groundwater [16–18]. This observation coincided
with an active search for appropriate materials to realize the concept of subsurface reactive
walls presented during the 1980s [18,19]. After some five years (1994–1998) of controversial
discussion on the mechanisms of the reductive degradation of organics and reductive
precipitation of inorganics in Fe0/H2O systems [13,20–29], a consensus was reached on the
electro-chemical nature of these reductive transformations [14] (Table 1).

Table 1. Outline of relevant arguments given to justify the process of contaminant removal using
Fe0/H2O systems up to the “broad consensus” in 1998 [14].

Article Objectives Contaminants of
Concern Conclusion Important Remarks

Gillham and
O’Hannesin [12]

Assess the suitability of Fe0

for the dehalogenation of 14
chlorinated methanes,
ethanes, and ethenes (RCl).

CT; TCM; DCM; TBM;
HCA; PCE; TCE;
trans-DCE; cis-DCE; DCE;
VC; 1,1,2,2-TECA;
1,1,1,2-TECA; and
1,1,1-TCA

Dehalogenation of RCl by
Fe0 occurs probably via
direct reduction.

Study focused on
contaminant removal.
Little attention was paid
to the actual mechanisms.

Lipczynska-Kochany
et al. [27]

Investigate of the effect of
acidification on the
dehalogenation kinetics of
carbon tetrachloride (RCl)
by Fe0, and contribute to
understanding the
mechanisms of these
processes.

CCl4
Acidification enhances
RCl dehalogenation by
Fe0.

Study questioned the
sustainability of direct
reduction by increasing
pH values.

Matheson and
Tratnyek [13]

Contribute to understanding
the mechanism (and
kinetics) of chlorinated
methanes (RCl)
transformations in the
presence of granular Fe0.

CCl4; CH3Cl; and TCE
Dehalogenation of RCl by
Fe0 occurs mostly via
direct reduction.

Reductive transformation
of RCl by Fe0 was favored.

Schreier and Reinhard
[28]

Investigate the ability of Fe
and Mn powders to
transform some chlorinated
organic compounds (RCl)
under anaerobic conditions.

PCE; 1,1,1-TCA; 1,1-DCE;
DCM; 1,1-DCA; and
1,4-DCB

Dehalogenation of RCl by
Fe0 occurs via direct
reduction.

Study reported on a time
lag prior to quantitative
contaminant reduction.

Burris et al. [20]

Determine the sorption and
reduction kinetics of
trichloroethylene and
tetrachloroethylene (RCl)
with Fe0 under anaerobic
conditions.

TCE and PCE

Reduction rates are
first-order, thereby
indicating that the bulk of
sorption occurs on
non-reactive sites.

Study seeking to confirm
the reductive
transformation paradigm.



Water 2022, 14, 3120 3 of 19

Table 1. Cont.

Article Objectives Contaminants of
Concern Conclusion Important Remarks

Cantrell et al. [29]

Assess the suitability of Fe0

to remove some selected
metals from groundwater,
while characterizing the
reaction kinetics and relating
the findings to the
thermodynamics of
involved redox couples.

UO2
2+; MoO4

2−; TcO4
−;

and CrO4
2−

Metals removal by Fe0

occurs partly via direct
reductive precipitation.

Study conducted in
analogy to Matheson and
Tratnyek [13].

Warren et al. [21]

Contribute to understanding
the mechanism (and
kinetics) of carbon
tetrachloride (RCl)
dehalogenation using Fe0.

CCl4

Reductive dehalogenation
of RCl by Fe0 is mediated
by hydrogen at the metal
surface.

The reductive
transformation paradigm
was questioned.

Roberts et al. [22]

Assess whether
β-elimination reactions of
chlorinated ethylenes (RCl)
occur in the presence of Fe0

and Zn0.

DCE; trans-DCE; Cis-DCE;
1,1-DCE and VC

Dehalogenation of RCl by
Fe0 occurs via direct
reduction.

Study conducted in
analogy to Matheson and
Tratnyek [13].

Weber [23]

Study the reduction of
4-aminoazobenzene by Fe0

to determine whether the
process is surface-mediated.

4-aminoazobenzene
(4-AAB)

Reductive transformation
by Fe0 is a
surface-mediated process
with direct electron
transfer from Fe0 to the
substrate.

Study seeking to confirm
the reductive
transformation paradigm.

Burris et al. [24]

Examine the sorption of
chlorinated ethenes (RCl) to
cast iron (Fe0) surfaces to: (i)
assess the generality of
non-reactive sorption
behavior for cast irons; (ii)
determine the predominant
non-reactive sorbent on the
cast iron surface; (iii)
determine whether sorption
to cast iron adheres to
Traube’s rule (sorption
proportional to
hydrophobicity); and (iv)
evaluate rate-limited
sorption/desorption for the
non-reactive sites.

TCE and PCE

Significant mass transfer
limitations to non-reactive
sorption sites exist for PCE
but not for TCE.

Study seeking to confirm
the reductive
transformation paradigm.

Fiedor et al. [25]

Investigate the removal
mechanism of soluble
uranium from groundwater
by Fe0.

UO2
2+ (i.e., U6+)

Reduction of U6+ to U4+

by Fe0 is mediated by Fe2+

or H2, but the reaction is
kinetically slow.

The reductive
transformation paradigm
was questioned.

Gu et al. [26]

Determine the effectiveness
of Fe0 and several adsorbent
materials in removing
uranium (U) from
contaminated groundwater,
and to investigate the rates
and mechanisms that are
involved in the reactions.

UO2
2+

Uranium removal by Fe0

occurs via direct reductive
precipitation.

Study conducted in
analogy to Matheson and
Tratnyek [13].

O’Hannesin and
Gillham [14]

Long-term field
investigation of the
suitability of granular Fe0

for the in-situ degradation of
dissolved chlorinated
organic compounds (RCl).

TCE and PCE

Dehalogenation of RCl by
Fe0 is quantitative and
occurs via direct
reduction.

Reductive transformation
of RCl by Fe0 was favored
and explicitly recognized
as a “broad consensus”.

Table 1 is by no means a ‘pros and cons’ list to assist any decision-making process. A
pros and cons list is conventionally used to help understand both sides of an argument.
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Pros are listed as arguments in favor of making a particular decision, while the cons are
counter-arguments against the same decision. In Table 1, however, arguments are listed
to recall the genesis of the reductive transformation concept, arguing that contaminant
reduction is the cathodic reaction simultaneous to the oxidative dissolution of metallic
iron (reductive transformation paradigm). In other words, the reductive transformation
paradigm regards Fe0 as a relevant reducing agent under environmental conditions [13,18].
In this context, Fe0 is often regarded as ‘a fixed source of electrons’ for the reductive
transformation of aqueous inorganic and organic contaminants [18]. Factually, this concept
fails to justify the quantitative removal of microorganisms [30,31].

Sustained by the reductive transformation paradigm, the past 30 years have witnessed
the application of Fe0-based systems for groundwater remediation [32–37]. Efficient sys-
tems for wastewater treatment [38–41] and safe drinking water supply [42–45] were also
presented. Despite such an impressive record, with more than 5000 peer-reviewed arti-
cles [46,47], the Fe0 remediation technology is still an innovative one [37,48–50]. Nonethe-
less, the large majority of active researchers and practitioners regard Fe0 remediation as an
established technology [33,34,51,52]. The main point of the discrepancy between the two
groups is about the role of Fe0 in removing contaminants in Fe0/H2O systems [37,50]. Since
2007, our research group has strongly refuted the view that any electron from Fe0 can be
transferred to dissolved contaminants under field or environmentally relevant conditions.
Noubactep has been considered for more than a decade as a leading “science denier”:
(i) questioning scientific milestones and spreading misinformation, and (ii) “contradict-
ing decades of scientific endeavor” just like scientists denying climate change, pandemic
issues, or the theory of evolution [53–56]. Our arguments have been mostly considered
as “contrarian claims” [57] as opposed to sound scientific data supporting the view that
contaminant reduction is the cathodic reaction simultaneous to Fe0 oxidation (Table 1).
The following statement of a potential reviewer recently (2022) declining a manuscript
submitted by Noubactep et al. at a “reputed” journal supports this negative view of the
alternative concept: “You should not be sending these diatribes by Noubactep out for
review. He submits variations on this paper all over the place. They mostly get rejected
without review, but occasionally one slips through. They are an impenetrable mixture
of about 1/3 creative critical reviewing and about 2/3 paranoid delusional nonsense. I
stopped agreeing to review them almost 10 years ago” (Statement 1). This statement is just
opposed to the opening quote by the German writer, pictorial artist, biologist, theoretical
physicist, and polymath Johann Wolfgang von Goethe [58]. In particular, Statement 1 can
be regarded as a dissuasive demonstration that it is “not even worth the effort of looking
into” science denial by the submitting authors. Table 2 gives an overview of some of these
‘diatribes’ from 2007 to 2022. It is seen from the titles that the prevailing concept has been
constantly challenged.

Table 2. A selection of 34 articles of our research group refuting the view that Fe0 oxidative dissolution
is the anodic half-reaction coupled to contaminant reduction in Fe0/H2O systems. Citations stands
for the number of references according to Google Scholar (Accessed on 31 August 2022).

Year Title Journal Citations Reference

2022
Metallic iron for water remediation: Plenty of room
for collaboration and convergence to advance the

science
Water/MDPI 2 [37]

2022 Should the term ‘metallic iron’ appear in the title of
a research paper? Chemosphere 9 [59]

2021 Metallic iron for environmental remediation: The
fallacy of the electron efficiency concept Front. Environ. Chem. 10 [50]

2021
The mechanism of contaminant removal in

Fe0/H2O systems: The burden of a poor literature
review

Chemosphere 9 [60]
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Table 2. Cont.

Year Title Journal Citations Reference

2020
Tracing the scientific history of Fe0-based

environmental remediation prior to the advent of
permeable reactive barriers

Processes/MDPI 17 [61]

2020 Metallic iron for environmental remediation:
Starting an overdue progress in knowledge Water/MDPI 23 [62]

2019 Redirecting research on Fe0 for environmental
remediation: The search for synergy

Int. J. Environ. Res.
Public Health 13 [63]

2019 The operating mode of Fe0/H2O systems: Hidden
truth or repeated nonsense?

Fresenius Environ. Bull. 12 [64]

2019 Metallic iron and the dialogue of the deaf Fresenius Environ. Bull. 19 [65]

2018 Fe0/H2O systems for environmental remediation:
The scientific history and future research directions

Water/MDPI 16 [66]

2018 Iron corrosion: Scientific heritage in jeopardy Sustainability/MDPI 6 [67]

2018 Metallic iron for environmental remediation: How
experts maintain a comfortable status quo Fresenius Environ. Bull. 5 [68]

2017 Metallic iron for water treatment: Leaving the
valley of confusion Appl. Water Sci. 44 [69]

2017 Rescuing Fe0 remediation research from its
systemic flaws

Res. Rev. Insights 23 [70]

2016 Predicting the hydraulic conductivity of metallic
iron filters: Modeling gone astray Water/MDPI 36 [71]

2016 Research on metallic iron for environmental
remediation: Stopping growing sloppy science Chemosphere 38 [72]

2016 No scientific debate in the zero-valent iron
literature Fresenius Environ. Bull. 17 [73]

2015 Metallic iron for environmental remediation: A
review of reviews Water Res. 140 [74]

2014 Water remediation by metallic iron: Much ado
about nothing—As profitless as water in a sieve? CLEAN-Soil, Air, Water 8 [75]

2014 Flaws in the design of Fe0-based filtration systems? Chemosphere 46 [76]

2013 Metallic iron for water treatment: Prevailing
paradigm hinders progress Fresenius Environ. Bull. 12 [77]

2013 Metallic iron for environmental remediation:
Missing the ‘valley of death’ Fresenius Environ. Bull. 10 [78]

2013 Metallic iron for environmental remediation: the
long walk to evidence Corros. Rev. 19 [79]

2012 Metallic iron for environmental remediation: Back
to textbooks Fresenius Environ. Bull. 19 [80]

2011 Metallic iron for water treatment: A knowledge
system challenges mainstream science Fresenius Environ. Bull. 30 [81]

2011 Aqueous contaminant removal by metallic iron: Is
the paradigm shifting? Water SA 76 [82]

2010 On nanoscale metallic iron for groundwater
remediation J. Hazard. Mater. 70 [83]

2010 The suitability of metallic iron for environmental
remediation Environ. Progr. 78 [84]
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Table 2. Cont.

Year Title Journal Citations Reference

2009 An analysis of the evolution of reactive species in
Fe0/H2O systems J. Hazard. Mater. 144 [85]

2009 Fe0-based alloys for environmental remediation:
Thinking outside the box

J. Hazard. Mater. 34 [86]

2009 On the validity of specific rate constants (kSA) in
Fe0/H2O systems J. Hazard. Mater. 18 [87]

2009 On the operating mode of bimetallic systems for
environmental remediation J. Hazard. Mater. 36 [88]

2008 A critical review on the mechanism of contaminant
removal in Fe0–H2O systems Environ. Technol. 396 [89]

2007
Processes of contaminant removal in “Fe0–H2O”

systems revisited. The importance of
co-precipitation

Open Environ. Sci. 170 [90]

Statement 1 and the relatively low attention received by our published articles (Table 2)
suggest that there is a communication problem. From our perspective, the contributions
were well-conceived and timely. The often claimed ‘paucity of experimental support’
for our views is not acceptable (Section 3). Our efforts to promote the hypothesis that
aqueous contaminant removal in the presence of Fe0 occurred primarily by adsorption and
co-precipitation within the oxide scale even started earlier than 2007. Table 3 presents five
articles written by the corresponding author in German on the same topic. The main feature
from Table 3 is that the alternative concept was known to active German researchers on Fe0

for water remediation, even before 2007. Moreover, one of the papers at TerraTech has even
been referenced by a research group from Bern, Switzerland [91], attesting that “German
papers” were internationally known. It is also surprising that even German PhD candidates
have not really considered the core of our work in their literature review. To the best of
our knowledge, Burghardt [92] is the sole exception, explicitly basing some reasoning on
Noubactep’s PhD and related articles. From the English language papers in Table 2, the
most cited, with 396 counts, is a 15-year-old critical review. Two comparative review articles
from the same year have received more attention as evidenced by their number of citations:
(i) Cundy et al. [93] with 722 counts, and (ii) Thiruvenkatachari et al. [94] with 422 counts.
The additional burden in getting some few articles published (statement 1) suggests that
the research community is not willing to test any alternative view. This sentiment was
reinforced while publishing Hu et al. [50] at Frontiers in Environmental Chemistry. Despite
the innovative open peer-review process at Frontiers, the initial submission was rejected
twice after evaluation; only the second re-submission was positively evaluated by all
invited reviewers, who accepted to endorse the publication. The whole procedure lasted
for some 18 months. Two recent articles [37,50] extensively present the state-of-the-art
knowledge on the view that Fe0 is a generator of contaminant scavengers and secondary
reducing agents (e.g., FeII species, FeII/FeIII species, H2). Interested readers are referred to
these open-access papers. As part of a special issue, having been invited to encourage the
scientific community to pay more attention to the adsorption/co-precipitation concept, the
present article retraces the path of our research group through the past 15 years. The aim is
to demonstrate the relevance of the opening quote by Johann Wolfgang von Goethe [58] for
the science of aqueous iron corrosion. The presentation starts with an elucidation of the
Fe0/H2O system and its aspects that have not been properly considered by pioneers of Fe0

remediation technology. Following this, the milestones of our research group are presented
together with commentaries on how they were perceived, mostly by reviewers of journal
articles and academic theses.
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Table 3. The five articles in German (‘German papers’) refuting the reductive transformation concept
and their citations according to Google Scholar (accessed on 31 August 2022). The original titles are
given in the references.

Year Title Journal Citations Reference

2015
New concepts for designing

experiments regarding the process of
water treatment in Fe0/H2O systems

Afrika and
Wissenschaft 0 [95]

2007

Response to the comments by
colleagues Ebert and co-authors on

my articles “The end of a myth”
(TerraTech 11–12/2006) and “On the

operating mode of reactive walls”
(TerraTech 3–4/2007)

TerraTech 1 [96]

2007

On the operating mode of reactive
walls: The emergence of the view that
contaminant reduction occurs at the

surface of elemental iron

TerraTech 1 [97]

2006

The end of a myth: Contaminant
reduction by electrons from elemental

iron contradicts three centuries of
corrosion research

TerraTech 4 [98]

2003 Investigations for the passive in-situ
immobilization of U(VI) from water

Wissenschaftliche
Mitteilungen 16 [99]

2. The Fe0/H2O System
2.1. General Aspects

The treatment of polluted surface water and groundwater is a costly endeavor. The
introduction of in-situ treatment technologies such as Fe0-based permeable reactive barriers
(PRBs) has substantially reduced the costs of groundwater remediation [3]. Fe0 PRBs take
advantage of the electro-chemical nature of aqueous iron corrosion to remove contaminants
from the aqueous phase. In some cases, contaminants are transformed or degraded to
less-toxic, non-toxic or immobilized chemical forms [12,13,29,100]. The current discrepancy
in the Fe0 remediation literature stems from an insufficient analysis of the Fe0/H2O systems
and their related dynamics [37,50]. This section presents the Fe0/H2O system and makes a
holistic analysis of it.

Upon immersion in an aqueous environment, a piece of Fe0 is oxidized by water (H2O
or H+) following an electro-chemical mechanism (Equation (1)).

Fe0 + 2 H+ ⇒ Fe2+ + H2 (1)

It is fundamental to state straight away that the reaction according to Equation (1)
occurs both under anoxic (anaerobic) and oxic (aerobic) conditions. This phenomenon
is published as an award-winning breakthrough which is a century old [101]. It was
demonstrated by W.R. Whitney in 1903, and awarded the first Willis Rodney Whitney
Award 44 years later in 1947. Even now, the Willis Rodney Whitney Award is given by the
National Association of Corrosion Engineers (NACE—https://www.corrosionpedia.com
(accessed on: 3 September 2022)) for “significant contributions to corrosion science, such as
the development or improvement of a theory that provides a fundamental understanding
of corrosion phenomena”. Clearly, the demonstration of W.R. Whitney advanced corrosion
a century ago; it is thus strange that contrarian views have been introduced and supported
for decades (Table 1) [37,50,59].

https://www.corrosionpedia.com
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2.2. Fe0 Corrosion under Anoxic Conditions

Under anoxic conditions (no dissolved O2), Fe0 is corroded by H+ (Equation (1)) and
traces of Fe3+ (Equation (2)).

Fe0 + 2 Fe3+ ⇒ 3 Fe2+ (2)

The net result is a system with various species of FeII (e.g., FeO, Fe(OH)2), FeII/FeIII

(e.g., Fe3O4), FeIII (e.g., FeOOH) hydroxides/oxides, and H2. FeII species, FeII/FeIII

species, and H2 are stand-alone reducing agents. There is a high density of reductive
species but reduction of contaminants occurs according to a chemical mechanism, mean-
ing that the reducing electrons are not from Fe0. This assertion refutes the discovery of
Reynold et al. [15] and the whole consensus on which the reductive transformation concept
is built (Table 1) [37,50]. Clearly, Fe0 corrosion by water is an electro-chemical process,
but contaminant-reductive transformation in the presence of iron metal (Fe0) is a chemical
reaction. This statement is indirectly supported by Burris et al. [20,24], who arbitrarily
segregated the Fe0 surface into reactive and non-reactive sites. The same authors were the
first to insist on the importance of adsorption processes for organics, beside reductive trans-
formations. Their arguments were later supported by many other researchers, including
Mantha et al. [102], Furukawa et al. [103], and Mielczarski et al. [104]. Our research group
was the first to radically exclude Fe0 from the relevant reducing agents, while regarding
solid iron corrosion products as the main contaminant scavengers [82,84,89,90].

2.3. Fe0 Corrosion under Oxic Conditions

Under oxic conditions (presence of O2), Fe0 is still corroded by H+ (Equation (1)), but
generated Fe2+ is instantaneously used for O2 reduction (Equation (3)). In other words,
corrosion is accelerated because Fe2+ (Equation (1)) is consumed for O2 reduction (Le
Chatelier’s principle). Equation (3) considers the fact that, at circum-neutral pH, produced
FeIII species hydrolyze and precipitate [105].

2 Fe2+ + 1/2 O2 + 5 H2O⇒ 2 Fe(OH)3 + 4 H+ (3)

Despite the abundance of O2, the Fe0 surface is shielded by a non-conductive oxide
scale (oxide film) acting as diffusion barrier to O2. The net result is that, in the vicinity
of Fe0, the Fe0/oxide interface is still highly anoxic and on the exterior of the oxide scale,
the oxide/water interface is highly oxic. In other words, under external oxic conditions,
the oxide scale on Fe0 is highly layered. The outer layers are highly oxic, while the inner
layers are highly anoxic comparable to the situation in Section 2.2. Under these conditions,
redox transformations are possible, but electrons from Fe0 are not involved. Clearly, the
oxide scale is the site for contaminant redox transformations and their scavenging as
well [48,81,104–106].

2.4. Dynamics of the Fe0/H2O System

From the pure thermodynamic perspective, Fe0 corrosion results in Fe solid precip-
itates (FeCPs) that are contaminant scavengers. FeCPs remove contaminants from the
aqueous phase by two main mechanisms: (i) enmeshment during their precipitation (co-
precipitation), and (ii) adsorption onto their surface. Depending on the contaminant/FeCP
molar ratio, even species without affinity to FeCPs can be quantitatively removed. Two
particular examples are cationic methylene blue (MB) and Zn2+ [37,50]. Our research group
has exploited these properties of MB and the simplicity of its analytical determination to
develop a simple but efficient tool to characterize the reactivity of Fe0/H2O systems (the
MB method). The MB method characterizes the extent of in-situ sand coating in a Fe0/sand
system as iron corrodes [107,108]. In column experiments, the most reactive system is the
one experiencing the earliest breakthrough [109].

The performance of a field Fe0 PRB depends on local hydrogeochemical conditions
and barrier composition (e.g., Fe0 ratio). At the beginning of the implementation of Fe0

PRBs during the 1990s, there was an agreement on that field performance monitoring of
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contaminant level, Eh value, pH value, and permeability were needed to elucidate the
operating mode and assess the potential limitations of the PRB technology. However, after
two decades, published works on sustainable PRB systems still lack these before and after
analyses [36,110,111]. Moreover, little or no effort was directed at characterizing the iron
corrosion rate, that is, the rate at which a decrease in porosity in the reactive zone occurs,
or the rate at which contaminant scavengers are generated. Clearly, the real problem of Fe0

PRBs resulting from the poor system analysis is that the rate at which FeCPs are produced is
not known, and has even not been properly investigated [112–114]. Instead, the importance
of foreign minerals (e.g., CaCO3, MgCO3) has been largely overemphasized, while the
expansive nature of iron corrosion under aqueous conditions has been overlooked [112,114].
Even the Fe0 intrinsic reactivity has been poorly considered and experiments have rarely
lasted for more than four months [115–117].

3. Arguments against the Reductive Transformation Concept

The reductive transformation concept was adopted by a consensual approach as
discussed in Section 1 (Table 1). This is simply not acceptable in natural sciences, and in
the era of advanced instrumental analysis [118–123]. Moreover, the concept has ignored
many important results from mainstream corrosion science, including the seminal work of
Whitney [101]. Whitney [101] was a continuation of investigations on the electro-chemical
nature of metal corrosion as started in 1819 by Michael Faraday or in 1830 by Auguste de
la Rive (www.icorr.org/world-corrosion-science; accessed on: 3 September 2022). More
recently, the results of Whitney [101] have been independently rediscovered by several
researchers, including Michael Boris Khudenko [124], who used Cu2+ cementation by Fe0

to generate FeII and H+ for the degradation of organics in wastewater. In other words,
the reductive transformation concept is a clear distortion of the science of aqueous iron
corrosion [37,50]. Clearly, it is over to the followers of this concept to demonstrate its validity.
This section will present three tangible arguments against the aforementioned concept.

In the second half of the 1990s, the mechanism of UVI removal by Fe0/H2O sys-
tems was discussed controversially [25,26,125]. Research groups with expertise on UVI

interactions with iron oxides favored the view that UVI could not be quantitatively re-
duced under field conditions [25,125]. However, somehow, “Reductive precipitation of
uranium (VI) by zero-valent iron” by Gu et al. [26] has been favored by subsequent in-
vestigators and is still considered as the paper that has demonstrated the mechanism of
UVI removal in Fe0/H2O systems. This opinion has been challenged by three articles by
Noubactep et al. [126–128] who have clearly demonstrated that there is no quantitative UVI

removal under conditions where FeCP formation is hindered or delayed. A clear argument
against the reductive precipitation concept comes from the arsenazo III method for U
determination. In this method, UVI is reduced to UIV which forms stable complexes with
arsenazo III. UVI reduction occurs around pH 2.0 upon addition of HCl (6M) using granular
Bi0 or Zn0 as a reducing agent [129,130]. In the early phase of the arsenazo III method,
granular Fe0 was used as a reducing agent, but was abandoned because the reaction was
not really quantitative. The question arises, why a reaction that is not quantitative at pH 2.0
(free UO2

2+ in solution) should become quantitative at pH values where UO2
2+ (UVI) is not

stable? At pH > 4.0, more than 90% of the initial UVI concentration used by Gu et al. [26]
precipitates as schoepite (UO2(OH)2) [126,131,132].

The second argument against the reductive transformation concept is physical in
nature. The presentation in Section 2 has recalled that the Fe0 surface is permanently
covered with a non-conductive layered oxide scale. It is reasoned that the oxide scale is
the location of the contaminant removal and should never be altered or removed during
experiments [87,90]. In the early phase of Fe0 investigations, these prerequisites were
largely observed, for example by Matheson and Tratnyek [13] and Burris et al. [20] who just
stirred their experimental vessels at 15 and 8 rpm, respectively (Table 3). However, soon
after, experimental vessels were typically stirred or shaken at speeds exceeding 200 rpm
(Table 4). Surprisingly, such high homogenization speeds were explicitly intended to keep

www.icorr.org/world-corrosion-science
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reactive particles in suspension to accelerate mass transfer. Results achieved under such
conditions are inherently unrepresentative of practical or field environments. Thus, the
large majority of data supporting the reductive transformation concept were obtained
at mixing rates so high that no oxide scale could be generated in the vicinity of the Fe0

surface. The question arises, how can data obtained under undesirable conditions be used
to support this concept.

Table 4. Experimental conditions of some selected studies investigating the operating mode of
the Fe0/H2O system in batch mode. It is seen that in the initial phase (here up to 1998) only low
homogenization intensities were used; such conditions are representative of field situations.

Fe0 Material Contaminant Volume
(mL) Homogenization Reference

Size
(mm)

Loading
(g/L) type speed

0.15 1.7 Chlorinated methanes 60 shaking 15 [13]

0.15 250 Halogenated alphatics 40 Shaking 2 [12]

0.4 330 Trichloroethylene and
tetrachloroethylene 15 stirring 8 [19]

<0.15 10 4-aminoazobenzene 50 shaking - [23]

0.01 2 Trichloromethane and
trichloroethylene 2000 stirring 450 and

660 [133]

1.6–2.5 20 Uranium 20 quiescent 0 [126]

0.15 33 Nitrate 60 shaking 60 [134]

(5–8)
× 10−5 2 Nitrate 500 stirring 200 [135]

0.315 13
Sulfate, chloride,

nitrate, and
bicarbonate

186 stirring vigorous [136]

0.6–0.425 25 Arsenite 2000 stirring 55 [137]

0.2–5 2.4 Total organic carbon 500 stirring 500 and
1000 [138]

0.25 2.5 Phosphorus 100 stirring 165 [139]

The third argument against the reductive transformation concept is also physical in
nature. It is about the suitability of hybrid Fe0/aggregate systems. The view that Fe0 is at
least partly oxidized by contaminants has resulted in the consideration of the stoichiometry
of reactions similar to Equation (4) for the design of Fe0 PRBs [33,51,140,141].

Fe0 + RCl + H+ ⇒ Fe2+ + RH + Cl− (4)

Designing a PRB for the reductive transformation of RCl supposes that the more
Fe0, the more efficient the system. Accordingly, a pure Fe0 filter (100% Fe0) should be
more efficient than hybrid filters (e.g., Fe0/pyrite, Fe0/sand). Following this premise,
hybrid pre-treatment zones have been tested, such that the pure filter works under perfect
anoxic conditions [142–144]. However, pure Fe0 filters were proven efficient but not
sustainable [109,145,146]. The reason for this is that columns packed with 100% Fe0 material
left little room for solid phase expansion, because all particles are expansive. In fact, in-situ
generated FeCPs that are useful for contaminant removal are equally undesirable, because
they occupy the initial porosity, rendering the filter less and less permeable [112,113]. By
establishing this, our research group has certainly reflected strong links between academic
research and societal benefits. In particular, using this knowledge, we have presented the
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most efficient household water filters and ways to improve them while extending their use
to small communities [45,147].

4. Arguments against the Adsorption/Co-Precipitation Concept

The overarching goal for water remediation is to (detect and) remove toxic substances
from water, where possible affordably and robustly. The adsorption/co-precipitation con-
cept demonstrates that this objective is achieved for all biological and chemical pollutants in
well-designed, case-specific Fe0-based treatment systems. This is because Fe0 acts as source
of FeCPs, which are excellent contaminant scavengers. All contaminants are removed
regardless of their redox reactivity [89,90,148,149]. This knowledge is very old because Fe0

has been used for water treatment before the advent of coagulation/filtration [1,9,11].
It may be surprising to read that no argument against the adsorption/co-precipitation

concept has been presented, only skepticism, as already expressed in 2009: “Noubactep
questioned the premise that Fe0-induced contaminant removal is initiated by the direct
electron transfer from Fe0 to substrates and added that “the premise was already questioned
and/or proven inconsistent” while citing only his own papers [80,90]. This argument is
hardly acceptable, since the role of the direct electron transfer in Fe0-mediated reactions
is well-established and generally accepted among the research community” (Statement 2)
Kang and Choi [150]. The authors further blamed Noubactep for referencing only two
of his papers to support the statement. It would have been better to state what is wrong
with the statement. Today, reviewers still claim that we are using “non-standard, too high
self-citation” while recognizing that we have been walking almost alone for more than a
decade (Statement 1).

The sole pseudo-scientific argument against the adsorption/co-precipitation concept
has been the quest for proofs. However, as demonstrated in the previous sections, no proofs
are needed as any relevant experimental result could at best falsify the theory [151]. Yet
our publications have sufficiently falsified the reductive transformation concept. With the
volume of skepticism, our research group has not received any funding since 2008, that
is, for 14 good years equivalent to five generations of PhD students. The lack of funding
later turned to a blessing. This is because we had to work with what we could afford, and
that were the conditions for the development of the low-cost methylene blue method (MB
method, Section 5) [107,108].

5. Development of a New Research Tool for Fe0/H2O Systems: The MB Method

The Fe0 PRB technology is definitively an innovative technology for groundwater
remediation (Section 1) [152–155]. In innovation studies, it is crucial to properly derive
the specific research methodology from the theory of the system [156,157]. In other words,
it is crucial to assess how fit the methods used to answer the research question are. In
our context, the common research question is: “What makes a Fe0-based remediation
system efficient and sustainable?” The large majority of active researchers have coupled
the answer to this question to the reductive potential of Fe0 for dissolved contaminants
(e.g., chlorinated hydrocarbons, heavy metals). Accordingly, in the initial phase of the
technology’s development, it was commonplace to compare the electrode potential of Fe0

(E0 = −0.44 V) to that of dissolved species [22,158,159]. However, we are in a context where
it was established long ago that no dissolved species can oxidize Fe0 [101,124]. These
ancient works were not considered when introducing the reductive transformation theory.
Not knowing these works, Noubactep argued from 2006 onwards that because so many
classes of contaminants, including reducible ones (e.g., AsV, CuII, CrVI, RCl, SeVI) are
successfully treated in a Fe0/H2O system, reduction cannot be the fundamental removal
mechanism [89,90]. Results on CrVI removal in Fe0/H2O systems have long falsified the
reductive transformation concept [160].

In 2005, Song et al. [160] presented a mathematical model to explain why the presence
of sand could enhance CrVI “reduction” by Fe0. The standard redox potential of the
couple CrVI/CrIII is 1.52 V, making Fe0 (E0 = −0.44 V) a relevant reducing agent. However,
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reduction of CrVI by FeII is also possible (E0 = 0.77 V for the couple FeII/FeIII) and this is
even well-documented [161,162]. In other words, CrVI reduction is possible by both Fe0

and FeII. However, the question remains open, why adding sand, which was then largely
considered as “Fe0 dilution” [143,144,163], rather than enhancing the “reduction” efficiency.
The answer is given when considering that, in the Fe0/sand system, the negatively charged
sand surface is progressively coated with a positively charged oxide scale, which is good
scavenger for negatively charged CrVI (chromate CrO4

2−) [164]. In other words, regardless
of whether CrVI is reduced to CrIII or not, its quantitative removal in Fe0/sand systems is
justified by a larger adsorptive surface made available by coated sand.

Our research group has focused on ‘contaminant removal’ and not on ‘contaminant
reduction’. One additional reason was that contaminant reduction is rarely a removal
mechanism in the range of concentration relevant to natural waters [10,48,82]. In other
words, while having the same target (efficient and sustainable Fe0/H2O systems), the
research community was not working on the same research question and that justifies
the decade-old discrepancy [37,50,59]. Clearly, while using the same valid methodologies
(e.g., batch tests, column experiments, structural analysis), the research question was not
the same. Usually, the interested reader must assess whether the methodology used is
suitable to answer the research question. The presentation herein demonstrates that the
same research question was not asked, and even that it may not be worth insisting on
results provided for the wrong research question (e.g., contaminant reduction by electrons
from Fe0).

As a matter of fact, different methods provide different results, and these complemen-
tary methods are used to understand the Fe0/H2O system [118,120,164–166]. Moreover,
there should be an openly explained reason for using each specific method [116,157,166].
What will each specific method reveal about the phenomenon that would otherwise remain
hidden? Importantly, because the Fe0/H2O system is a dynamic one, it should be kept
in mind that all observations from the laboratory and the field are just “static snapshots”
and their measurements are inaccurate [50,151]. Therefore, innovative methodologies for
characterizing the dynamics of the system are highly needed [156].

The conventional approach to investigating the Fe0/H2O system consists of charac-
terizing the following at diverse timescales: (i) used Fe0 materials, (ii) in-situ generated
FeCPs and other mineral phases, (iii) contaminant concentration, (iv) nature and concen-
tration of daughter products, (v) contact time, (vi) pH value, and for column experiments,
(vi) changes of the hydraulic conductivity (permeability). Because of the dynamic nature
of the Fe0/H2O system, each recorded observation is a real static snapshot and its mag-
nitude depends on variables like Fe0 intrinsic reactivity, proportion of Fe0 in the reactive
zone, solution chemistry and temperature. Clearly, from the measurements and observa-
tions performed, a reconstruction of the phenomena (reverse modelling) is difficult and
even impossible.

To improve system characterization, our research group introduced the MB method to
follow the extent of Fe0 corrosion or the extent to which sand is coated in-situ by generated
FeCPs. The MB method is rooted on the historical observation by Mitchell and colleagues
that the efficiency of natural sand for MB discoloration depends on the extent to which its
surface contains coated iron oxides [167]. Accordingly, if the same mass of two different Fe0

materials is added to a given amount of sand, the more reactive system is the one producing
more FeCPs (e.g., for CrVI removal, see [160]), or the one depicting the lower extent of MB
discoloration. Using this simple experimental tool, impressive results have been achieved,
as recently summarized by Konadu-Amoah et al. [108]. For this article, it suffices to recall
that the MB method has clarified the importance of hybrid systems (Fe0/aggregates) for
sustainable Fe0 filters [109]. This challenging issue has been controversially discussed in
the literature for at least a decade [31,71,142,163,168,169]. The key issue has been using a
small amount of Fe0 (e.g., 100 g) and extending the contact time, for example, to more than
40 days in batch experiments and 4 months in column studies [109,170].
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6. Concluding Remarks

This article is regarded as our contribution to the 30th anniversary of Fe0 PRB tech-
nology in 2022. It summarizes our perspective as requested by Special Issue invitation. It
is certainly an expansion of some earlier ideas [37,50]. We hope to have delineated that
the currently prevailing reductive transformation concept cannot enable the design of
sustainable Fe0 filtration systems, because the issue of permeability loss cannot be solved
by increasing the Fe0 ratio up to 100%. The way forward is to continue in the path of the
adsorption/co-precipitation concept, a concept that has been around for 15 years, but has
been largely ignored by active researchers. The adsorption/co-precipitation concept ex-
presses a theory of how sustained permeability is achieved. It also advocates for a database
of reactive Fe0 materials which, when complete, will simplify the design of non-site-specific
Fe0/H2O systems.

According to the viewpoints discussed in this article, the following key conclusions
and perspectives are put forward:

1. operational reference Fe0 materials are needed to enable at least a semi-quantitative
comparison of results achieved under independent conditions.

2. experiments regarding the operating mode of filtration Fe0/H2O systems should be
performed under diffusion-controlled conditions.

3. pure Fe0 filters (100% Fe0) are not sustainable. Thus, Fe0 should always be mixed
with non-expansive aggregates like pumice or sand.

4. results based on the reductive transformation concept have been the cornerstone for
the development of the adsorption/co-precipitation concept. Accordingly, observa-
tions and recommendations/suggestions anchored on the adsorption/co-precipitation
concept should be acknowledged as valuable contributions in transferring scien-
tific knowledge.

5. the entire environmental research community should question the validity of the view
that Fe0 is a (strong) reducing agent under environmental conditions.

6. the MB method is a powerful tool for characterizing the dynamics of Fe0/H2O systems.

Finally, we wish to thank the active Fe0 research community for their skepticism and
some few editors/reviewers for being patient listeners to our proposal. The aforementioned
skepticism has been a driving force encouraging us to mine the literature for proofs. Among
the findings, the evidence that using iron filings for floc generation (e.g., flocculation) [1]
was perhaps as important as the “discovery” of Whitney [101] demonstrating that H+

and H+ alone are reducing agents for Fe0 under environmental conditions. These two
papers definitively falsified the reductive transformation concept, and thus breaking the last
trace of skepticism. It is our conviction that rooting future research on the adsorption/co-
precipitation concept will help provide cost-effective, robust, and sustainable Fe0-based
water treatment systems.
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