• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Automated Optimization-Based Deep Learning Models for Image Classification Tasks

    Thumbnail
    View/Open
    Full text (1.624Mb)
    Date
    2023-09-01
    Author
    Migayo, Daudi
    Kaijage, Shubi
    Swetala, Stephen
    Nyambo, Devotha
    Metadata
    Show full item record
    Abstract
    Applying deep learning models requires design and optimization when solving multi- faceted artificial intelligence tasks. Optimization relies on human expertise and is achieved only with great exertion. The current literature concentrates on automating design; optimization needs more attention. Similarly, most existing optimization libraries focus on other machine learning tasks rather than image classification. For this reason, an automated optimization scheme of deep learning models for image classification tasks is proposed in this paper. A sequential-model-based optimization algorithm was used to implement the proposed method. Four deep learning models, a transformer-based model, and standard datasets for image classification challenges were employed in the experiments. Through empirical evaluations, this paper demonstrates that the proposed scheme improves the performance of deep learning models. Specifically, for a Virtual Geometry Group (VGG-16), accuracy was heightened from 0.937 to 0.983, signifying a 73% relative error rate drop within an hour of automated optimization. Similarly, training-related parameter values are proposed to improve the performance of deep learning models. The scheme can be extended to automate the optimization of transformer-based models. The insights from this study may assist efforts to provide full access to the building and optimization of DL models, even for amateurs.
    URI
    https://doi.org/10.3390/computers12090174
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2023
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV