• Login
    View Item 
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pathogenicity and Approaches for Management of Anthracnose in Common Bean (Phaseolus vulgaris) in Africa

    Thumbnail
    View/Open
    Full text (464.5Kb)
    Date
    2022-10-16
    Author
    Kadege, Edith
    Venkataramana, Pavithravani
    Assefa, Teshale
    Ndunguru, Joseph
    Mukankusi, Clare
    Rubyogo, Jean
    Mbega, Ernest
    Metadata
    Show full item record
    Abstract
    Common bean plays significant role for human health globally and consumption of common bean is high in Africa as compared to other regions of the world. Despite common bean’s potential in Africa, productivity remains low due to diseases, drought and poor crop management. Anthracnose disease plays major role in reducing common bean grain yield in Africa. It is caused by seed-borne fungal pathogen Colletotrichum lindemuthianum leading to 100% yield loss. Limited and fragmented information on fungal infection, pathogenicity and management of common bean anthracnose in Africa affects decisions regarding anthracnose management. This review has been produced to collect information regarding anthracnose disease and its management in beans in Africa, which will be of great value to bean stakeholders. C. lindemuthianum can survive up to five years in infected seeds. During this time, seed is the main source of inoculum, infection and transmission of pathogen to new locations. Other sources and mechanisms of transmission include infected residues, farm tools, water, wind, and disturbance of moist foliage by animals, insects and people. Anthracnose is a hemibiotrophic pathogen, first establishing biotrophic interactions with common bean plant before switching to necrotrophism, causing significant yield loss. Mechanical force, chemical weapons, toxins and growth regulators facilitate pathogenesis. Use of anthracnose-resistant varieties is recommended to control common bean anthracnose followed by integrated anthracnose management. Future research in Africa should focus on why farmers rely heavily on local bean cultivars as seed and should use tricot as tool to screen anthracnose-resistant varieties and evaluate anthracnose management options for increased productivity, nutrition and income.
    URI
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1939
    Collections
    • Research Articles [LISBE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV