• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Early-Warning Dropout Visualization Tool for Secondary Schools: Using Machine Learning, QR Code, GIS and Mobile Application Techniques

    Thumbnail
    View/Open
    Full text (990.6Kb)
    Date
    2022
    Author
    Leo, Judith
    Metadata
    Show full item record
    Abstract
    : Investment in education through the provision of secondary school to the community is geared to develop human capital in Tanzania. However, these investments have been hampered by unacceptable higher rates of school dropouts, which seriously affect female students, since most schools do not have effective mechanisms for quality data management for immediate and effective decision making. Therefore, this study aims to solve the problem of data management from the school level in order to assist higher levels to receive appropriate and effective data on time through the use of emerging technologies such as machine learning, QR codes, and mobile application. To implement this solution, the study has explored the predictors of school dropout using a mixed approach with questionnaires and interview discussion. 600 participants participated in problem identification in the Arusha region. Through the use of design science research methodology, Unified Modeling Language, MYSQL, QR codes and mobile application techniques were integrated with Support Vector Machine to develop the proposed solution. Finally, the evaluation process considered 100 participants, and the results showed that an average of 89% of participants provided positive feedback on the functionalities of the developed tool to prevent dropouts in secondary schools in Africa at large.
    URI
    https://dx.doi.org/10.14569/IJACSA.2022.0131176
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1781
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV