• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Remediation of Soils Contaminated by Fluoride Using a Fermentation Product of Seaweed (Eucheuma cottonii)

    Thumbnail
    View/Open
    Full text (580.1Kb)
    Date
    2022-10-03
    Author
    Moirana, Ruth
    Mkunda, Josephine
    Paradelo, Marcos
    Machunda, Revocatus
    Mtei, Kelvin
    Metadata
    Show full item record
    Abstract
    is study investigated the e cacy of fermented seaweed (Eucheuma cottonii) on the remediation of uoride-contaminated soil. e soil was amended with either 1.25, 3.0, or 5.0% (w/w) fermented seaweed (FSW), parallel with the controls (0%). e amendment improved the physicochemical properties of the soil particularly pH regulated from strong alkaline (9.3) to neutral (7.0) which is essential for germination, crop growth, and yield. e amount of water soluble- uoride (Ws-F) dropped from 81.7 ± 3.1 mg/kg to 42.7 ± 2.4, 33.7 ± 1.2, 19.6 ± 0.9, and 12 ± 1.3 mg/kg following 0, 1.25, 3, and 5% amendment dosage, re spectively. Most of the Ws-F was converted into exchangeable uoride (Ex-F) and to uoride-bound to iron and manganese (Fe/ Mn-F). Furthermore, the amendment also enhanced microbial mass and diversity in the soil. e FSW contains organic acids which participate in ionic bonding with the multivalent cations in the soil. e formed compound participates in ion exchange with clay or with anionic adsorption to positively charged clay sites at the edges. is interaction is further essential for enhancing the uoride holding capacity of the soil. e use of seaweed reduced the bioavailability of uoride in the agricultural soils and had positive e ects on promoting soil fertility. However, further studies to observe its e ects on crop performance is of signi cance.
    URI
    https://doi.org/10.1155/2022/6967031
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1683
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV