• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Non-Newtonian heat and mass transfer on MHD blood flow through a stenosed artery in the presence of body exercise and chemical reaction

    Thumbnail
    View/Open
    Full text (1.902Mb)
    Date
    2020-09-17
    Author
    Mwapinga, Annord
    Mureithi, Eunice
    Makungu, James
    Masanja, Verdiana Grace
    Metadata
    Show full item record
    Abstract
    A mathematical model of non-Newtonian blood flow, heat and mass transfer through a stenosed artery is studied. The non-Newtonian model is chosen to suit the Herschel-Bulkley fluid characteristics, taking into account the presence of body acceleration, magnetic fields and chemical reaction. The study assumed that, the flow is unsteady, laminar, two-dimensional and axisymmetric. The governing flow equations of motion were solved numerically using explicit finite difference schemes. The study found that velocity profile diminishes with increase in Hartman number and increases with body acceleration. The temperature profile is raised by the increase of body acceleration and the Eckert number, while it diminishes with the increase of the Peclet number. It was found also that the concentration profile increases with the increase of the Soret number and decreases with the increase of the chemical reaction. It was further observed that the shear stress deviates more when n > 1 than when n < 1. Shear stress for power law fluid when n > 1 exhibited higher magnitude value than Newtonian, Bingham and Herschel-Bulkley fluids.
    URI
    http://dx.doi.org/10.28919/cmbn/4906
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1461
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV