• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Deep Reinforcement Learning based Handover Management for Millimeter Wave Communication

    Thumbnail
    View/Open
    Full text (1.247Mb)
    Date
    2021
    Author
    Mollel, Michael
    Kaijage, Shubi
    Michael, Kisangiri
    Metadata
    Show full item record
    Abstract
    The Millimeter Wave (mm-wave) band has a broad-spectrum capable of transmitting multi-gigabit per-second date-rate. However, the band suffers seriously from obstruction and high path loss, resulting in line-of-sight (LOS) and non-line-of-sight (NLOS) transmissions. All these lead to significant fluctu-ation in the signal received at the user end. Signal fluctuations present an unprecedented challenge in implementing the fifth gen-eration (5G) use-cases of the mm-wave spectrum. It also increases the user’s chances of changing the serving Base Station (BS) in the process, commonly known as Handover (HO). HO events become frequent for an ultra-dense dense network scenario, and HO management becomes increasingly challenging as the number of BS increases. HOs reduce network throughput, and hence the significance of mm-wave to 5G wireless system is diminished without adequate HO control. In this study, we propose a model for HO control based on the offline reinforcement learning (RL) algorithm that autonomously and smartly optimizes HO decisions taking into account prolonged user connectivity and throughput. We conclude by presenting the proposed model’s performance and comparing it with the state-of-art model, rate based HO scheme. The results reveal that the proposed model decreases excess HO by 70%, thus achieving a higher throughput relative to the rates based HO scheme.
    URI
    https://dx.doi.org/10.14569/IJACSA.2021.0120298
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1166
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV