• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Guanidinium tin halide perovskites: structural, electronic, and thermodynamic properties by quantum chemical study

    Thumbnail
    View/Open
    Abstract (69.81Kb)
    Date
    2021-04-17
    Author
    Paschal, Catherine
    Pogrebnoi, Alexander M.
    Pogrebnaya, Tatiana P.
    Metadata
    Show full item record
    Abstract
    The orthorhombic phase of guanidinium tin halide perovskites C(NH2)3SnX3, X = Cl, Br, I has been studied by quantum chemical method. The lattice parameters are optimized to obtain the minimum energy using the density functional theory with the generalized gradient approximation, GGA-PBE. The Kohn–Sham electronic band structures have been computed; the materials have direct bandgaps of 3.00, 2.47, and 1.78 eV for the C(NH2)3SnCl3, C(NH2)3SnBr3, and C(NH2)3SnI3, respectively, situated at the gamma symmetry points. The projected densities of states are analyzed and the contribution of the p- and s-states of the tin and halogen atoms evaluated. For the GUASnX3 compounds, thermodynamic stability to different decomposition routes has been assessed and standard enthalpies of formation obtained.
    URI
    https://doi.org/10.1007/s00339-021-04504-x
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1163
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV