• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Tamarindus Indica fruit shell ash: a low cost and effective catalyst for biodiesel production from Parinari curatellifolia seeds oil

    Thumbnail
    View/Open
    Full text (1.424Mb)
    Date
    2019-02-21
    Author
    Nabora, Christian S.
    Kingondu, Cecil K.
    Kivevele, Thomas T.
    Metadata
    Show full item record
    Abstract
    The study evaluated the potential use of agricultural waste, Tamarindus indica fruit shell ash, as a solid base catalyst for production of biodiesel. The catalyst was prepared by calcination of T. indica fruit shell at 800 °C in mufe furnace for 3 h. Branauer-Emmett-Teller, thermal gravimetric analysis, X-ray difraction, scanning electron microscope, X-ray forescence, and Hammett indicator techniques were used to characterize the physicochemical properties of the produced catalyst. The catalyst had basic strength of greater than 9.7 and mesoporous structure with pore size d=3.2 nm. The crystalline phase was made up of calcium oxide, potassium oxide, and magnesium oxide. The catalyst was tested for biodiesel production using Parinari curatellifolia seeds oil. The results showed that the best operating parameters for the production of biodiesel were 9:1 methanol to oil molar ratio, 125 mg catalyst (5 wt% of oil), 2 h reaction time, and 60 °C reaction temperature. These optimized operating parameters aforded a maximum yield of 96.2%. Also, fuel properties of biodiesel: acid value, viscosity, and fash, pour, and cloud points were investigated and compared to the ASTM standards limits D6751. The results were observed to be in good agreement with the ASTM standards limits for biodiesel. In addition, the catalyst was easily separated and subsequently reused for four runs in biodiesel production. Thus, Tamarind fruit shell derived catalyst is very promising for the production of biodiesel due to its high performance, low-cost, easy preparation and availability
    URI
    https://doi.org/10.1007/s42452-019-0256-3
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/776
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV