• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modification strategies to enhance electrosorption performance of activated carbon electrodes for capacitive deionization applications

    Thumbnail
    View/Open
    Abstract (7.408Kb)
    Date
    2019-09-01
    Author
    Sufiani, Omari
    Elisadiki, Joyce
    Machunda, Revocatus
    Jande, Yusufu
    Metadata
    Show full item record
    Abstract
    Capacitive deionization (CDI) is the competitive technology for water desalination which appears to become an alternative to conventional methods such as ion exchange resins, reverse osmosis, and electrodeionization. Variety of materials including, carbide-derived carbon, activated carbons, carbon nanotubes, carbon aerogels and mesoporous carbons have been studied for CDI applications most of them being porous carbons. However, materials such as carbon nanotubes are highly expensive and hinder applications at large industrial scale. Activated carbon is a cheap and commercially available electrode material for CDI though its desalination capacity is limited by factors such as low electrical conductivity, inability to selectively remove specific ions, co-ion expulsion, poor wettability, inappropriate pore size distribution and lack of inter-pore connectivity to enable ion diffusion. These factors have raised a concern to most researchers and try to find a way to modify the surface of porous materials. Some strategies have been used to modify activated carbons including dip-coating in dopamine solution, mixing with quaternized poly (4-vinylpyridine), combining with graphenes and carbon nanotubes, direct fluorination and etching in acid solution to mention few. This review highlight factor(s) that cause low performance of activated carbon and modification strategies used to treat activated carbon to enhance its adsorption performance. Furthermore, characterization methods used to confirm whether the modification was successful and the practical application of modification methods have been discussed. To our view this work will provide an understanding of the contribution offered by modified activated carbon electrodes in the development of CDI technology.
    URI
    https://doi.org/10.1016/j.jelechem.2019.113328
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/692
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV