• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Semi-Transparent Building Integrated Photovoltaic Solar Glazing: Investigations of Electrical and Optical Performances for Window Applications in Tropical Region

    Thumbnail
    View/Open
    Full text (1.586Mb)
    Date
    2019-12-17
    Author
    Joseph, Benedicto
    Kichonge, Baraka
    Pogrebnaya, Tatiana P.
    Metadata
    Show full item record
    Abstract
    Integrating solar PV technology with semi-transparent windows permits multifunctional operation as electricity generation and allowing natural light to enter the building, hence overall energy efficiency improvement. The performance of the semi-transparent building integrated PV glazing on office building facade has been investigated in Tanzania’s tropical climate. Experimental measurements of the electrical and optical parameters for the system efficacy evaluation were done at various conditions which included cloudy, normal, and clear sky days. The weather parameters under consideration were solar irradiance, air temperature, relative humidity, and wind speed. The experimental set-up consisted of building integrated silicon mono crystalline semi-transparent PV module rated at 50 W and accessories. The I-V and P-V curves were measured at different irradiances. Throughout the experiment, the observed module temperature was between 20°C and 51°C and the air temperature was 17–33°C while the humidity was recorded at the range of 23–63%. Module electrical efficiency was observed to vary from 4% to 9% while the visible light transmission was obtained between 11% and 19%. It was proved that at high temperature regardless of irradiance increase, there were observed output power and efficiency drops caused by high heat losses.
    URI
    https://doi.org/10.1155/2019/6096481
    http://dspace.nm-aist.ac.tz/handle/123456789/609
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV