• Login
    View Item 
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Curdlan-Conjugated PLGA Nanoparticles Possess Macrophage Stimulant Activity and Drug Delivery Capabilities

    Thumbnail
    View/Open
    Research Article (2.286Mb)
    Date
    2015-03-28
    Author
    Tukulula, Matshawandile
    Hayeshi, Rose
    Fonteh, Pascaline
    Meyer, Debra
    Ndamase, Abongile
    Madziva, Michael T.
    Khumalo, Vincent
    Lubuschagne, Philip
    Naicker, Brendon
    Swai, Hulda
    Dube, Admire
    Metadata
    Show full item record
    Abstract
    Purpose There is significant interest in the application of nanoparticles to deliver immunostimulatory signals to cells.We hypothesized that curdlan (immune stimulating polymer) could be conjugated to PLGA and nanoparticles from this copolymer would possess immunostimulatory activity, be non-cytotoxic and function as an effective sustained drug release system. Methods Carbodiimide chemistry was employed to conjugate curdlan to PLGA. The conjugate (C-PLGA) was characterized using 1H and 13C NMR, FTIR, DSC and TGA. Nanoparticles were synthesized using an emulsion-solvent evaporation technique. Immunostimulatory activity was characterized in THP-1 derived macrophages. MTTassay and real-time impedance measurements were used to characterize polymer and nanoparticle toxicity and uptake in macrophages. Drug delivery capability was assessed across Caco-2 cells using rifampicin as a model drug. Results Spectral characterization confirmed successful synthesis of C-PLGA. C-PLGA nanoparticles enhanced phosphorylated ERK production in macrophages indicating cell stimulation. Nanoparticles provided slow release of rifampicin across Caco-2 cells. Polymers but not nanoparticles altered the adhesion profiles of the macrophages. Impedance measurements suggested Ca2+ dependent uptake of nanoparticles by the macrophages. Conclusions PLGA nanoparticles with macrophage stimulating and sustained drug delivery capabilities have been prepared. These nanoparticles can be used to stimulate macrophages and concurrently deliver drug in infectious disease therapy.
    URI
    DOI 10.1007/s11095-015-1655-9
    http://dspace.nm-aist.ac.tz/handle/123456789/504
    Collections
    • Research Articles [LISBE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV