• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An Ensemble Predictive Model Based Prototype for Student Drop-out in Secondary Schools

    Thumbnail
    View/Open
    Research Article (892.8Kb)
    Date
    2019-08-22
    Author
    Mduma, Neema
    Kalegele, Khamisi
    Machuve, Dina
    Metadata
    Show full item record
    Abstract
    When a student is absent from school for a continuous number of days as defined by the relevant authority, that student is considered to have dropped out of school. In Tanzania, for instance, drop-out is when a student is absent continuously for a period of 90 days. Despite the fact that several efforts have been made to improve the overall status of education at secondary level, the student drop-out problem still persists. Taking advantage of advancement in technology, several studies have used machine learning to address the student drop-out problem. However, most of the conducted studies have used datasets from developed countries, while developing countries are facing challenges on generating public datasets to be used to address this problem. Using a dataset from Tanzania which reflect a local scenario; this study presents an ensemble predictive model based prototype for student drop-out in secondary schools. The deployed model was developed by soft combining a tuned Logistic Regression and Multi-Layer Perceptron models. A feature engineering experiment was conducted to obtain the most important features for predicting student drop-out. Furthermore, a visualization module was integrated to assist interpretation of the machine learning results and we used flask framework in the development of the prototype.
    URI
    https://doi.org/10.29333/jisem/5893
    http://dspace.nm-aist.ac.tz/handle/123456789/444
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV