• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Sensitivity analysis and uncertainty quantification of climate change effects on Tanzanian banana crop yield

    Thumbnail
    View/Open
    Full text (2.555Mb)
    Date
    205-01-09
    Author
    Patrick, Sabas
    Mirau, Silas
    Mbalawata, Isambi
    Leo, Judith
    Metadata
    Show full item record
    Abstract
    Concerns about the impact of climate change on agricultural systems have heightened, par ticularly in regions where crop cultivation is essential for economic stability and sustenance. This research addresses a critical gap in understanding by investigating how climate change influences Tanzania’s bananas, a vital component of the country’s agricultural sector. The study used a multiple regression model to analyze the correlation between bananas and key climate variables in Tanzania, the results showed gradual decrease in bananas. Specifically, the climate variables, including precipitation (𝑋1), soil moisture (𝑋2), minimum temperature (𝑋3), maximum temperature (𝑋4), and relative humidity (𝑋5) have coefficients 0.0206, −0.0085, 4.8328, −1.6594, and −0.0991, respectively. In this case, a large positive coefficient and a negligible negative coefficient show that the independent variable greatly influences the yield of the bananas. Additionally, the study utilize two powerful global sensitivity analysis methods, Sobol’ Sensitivity Indices and Response Surface Methodology, to comprehensively explore the sensitivity of bananas to climate variables. So, these methods revealed that minimum temperature, precipitation and soil moisture have the most impact on bananas and affect the crop’s production variability. Uncertainty quantification was performed using Monte Carlo simulation, estimating uncertainties in model parameters to enhance the reliability of the findings. This research not only contributes to our broader understanding of how climate change impacts bananas but also offers practical policy suggestions tailored to Tanzania’s unique context, ensuring resilience and sustainability in the face of environmental changes. The outcomes of this study carry significance for policymakers, stakeholders, and farmers, providing actionable insights to shape adaptive agricultural strategies. By bridging the gap between climate change and bananas
    URI
    https://doi.org/10.1016/j.rico.2025.100519
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/3008
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV