• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Predicting customer subscription in bank telemarketing campaigns using ensemble learning models

    Thumbnail
    View/Open
    Full text (549.6Kb)
    Date
    2025-03
    Author
    Peter, Michael
    Mofi, Hawa
    Likoko, Said
    Sabas, Julius
    Mbura, Ramadhani
    Mduma, Neema
    Metadata
    Show full item record
    Abstract
    This study investigates the use of ensemble learning models bagging, boosting, and stacking to enhance the accuracy and reliability of predicting customer subscriptions in bank telemarketing campaigns. Recognizing the challenges posed by class imbalance and complex customer behaviors, we employ multiple ensemble techniques to build a robust predictive framework. Our analysis demonstrates that stacking models achieve the best overall performance, with an accuracy of 91.88% and an Receiver Operating Characteristic Area Under the Curve (ROC-AUC) score of 0.9491, indicating a strong capability to differentiate between subscribers and non-subscribers. Additionally, feature importance analysis reveals that contact duration, economic indicators like the Euro interbank offered (Euribor) rate, and customer age are the most influential factors in predicting subscription likelihood. These findings suggest that by focusing on customer engagement and economic trends, banks can improve telemarketing campaign effectiveness. We recommend the integration of advanced balancing techniques and real-time prediction systems to further enhance model performance and adaptability. Future work could explore deep learning models and interpretability techniques to gain deeper insights into customer behavior patterns. Overall, this study highlights the potential of ensemble models in predictive modeling for telemarketing, providing a data-driven foundation for more targeted and efficient customer acquisition strategies.
    URI
    https://doi.org/10.1016/j.mlwa.2025.100618
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2852
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV