• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biochars derived from banana and mango peels in isolated systems revealed high removal efficiency of endocrine-disrupting compounds from water.

    Thumbnail
    View/Open
    Abstract (304.9Kb)
    Date
    2024-10-01
    Author
    Kasambala, Hildegard
    Rwiza, Mwemezi
    Mpumi, Nelson
    Mwema, Mwema Felix
    Njau, Karoli
    Metadata
    Show full item record
    Abstract
    This study investigated the effectiveness of biochar derived from banana and disrupting endocrine-disrupting compounds (EDCs) from water in isolated systems. The study aimed to provide an eco-friendly solution for water purification using agricultural waste products. Banana and mango peels were dried, ground, and calcinated at 300, 550, and 700 °C temperatures. The biochar was tested through a batch adsorption experiment for the removal of progesterone, and the remaining progesterone was analyzed using high-performance liquid chromatography (HPLC). Results indicated that the banana peel biochar (BPB) and mango peel biochar (MPB) achieved the highest adsorption capacities of 92.8 and 87.9%, respectively, when subjected to pyrolysis at 700 °C. The effect of other factors on adsorbent efficiency and its characteristics were subsequently analyzed by biochar calcinated at 700 °C. Results indicate that as the concentration of adsorbent increases, the adsorption efficiency increases while the adsorption capacity decreases. The Langmuir model fits better in BPB, while the Freundlich model fits better in MPB. The maximum adsorption capacities of the Langmuir model were 43.42 and 37.80 mg of progesterone per g of BPB and MPB, respectively. The scanning electron microscopy image (SEM) showed that biochar from 700 °C presents higher porosities than biochar. The Brunauer–Emmett–Teller (BET) showed that both biochars had high surface area and equal pore volume. Therefore, the study suggests that BPB and MPB are the best eco-friendly agricultural waste materials for development of sustainable water treatment technologies for removal of EDCs from water.
    URI
    https://doi.org/10.1007/s13399-024-06196-8
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2809
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV