• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Machine Learning Model for detecting Covid-19 Misinformation in Swahili Language

    Thumbnail
    View/Open
    Abstract (12.71Kb)
    Date
    2023-06-02
    Author
    Mlawa, Filbert
    Mkoba, Elizabeth
    Mduma, Neema
    Metadata
    Show full item record
    Abstract
    The recorded cases of corona virus (COVID-19) pandemic disease are millions and its mortality rate was maximized during the period from April 2020 to January 2022. Misinformation arose regarding this threat, which spread through social media platforms, and especially Twitter, often spreading confusion, social turmoil, and panic to the public. To identify such misinformation, a machine learning model is needed to detect whether the given information is true (true information) or not (misinformation). The aim of this paper is to present a machine-learning model for detecting COVID-19 misinformation in the Swahili language in tweets. The five machine learning algorithms that were trained for detecting Swahili language misinformation related to COVID-19 are Logistic Regression (LR), Support Vector Machine (SVM), Bagging Ensemble (BE), Multinomial Naïve Bayes (MNB), and Random Forest (RF). The study used the qualitative research method because non-numerical data, i.e. text, were used. Python programming language was used for data analysis due to its powerful libraries such as pandas and numpy. Four metrics were used to evaluate the model performance. The results revealed that SVM achieved the highest accuracy of 83.67% followed by LR with 82.47%. MNB achieved the best precision of 92.00% and in terms of recall and F1-score, RF, and SVM achieved the best results with 84.82% and 81.45%, respectively. This study will enable the public to easily identify Swahili language misinformation related to COVID-19 that is circulated on Twitter social media platform.
    URI
    https://doi.org/10.48084/etasr.5636
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2715
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV