Common beans imagery dataset for early detection of bean rust and bean anthracnose diseases
View/ Open
Date
2024-05-11Author
Laizer, Hudson
Mduma, Neema
Machuve, Dina
Maganga, Reinfrid
Metadata
Show full item recordAbstract
Common bean plays a crucial role in the agricultural sector in Tanzania. To most smallholder farmers, the crop serves as a principal source of protein and an essential source of income. Despite its significance, common bean production is often affected by diseases, particularly bean rust and bean anthracnose, resulting in low yields and diminished economic returns. To address this challenge, a comprehensive dataset of common bean leaf images has been collected by using smartphone cameras to capture the visual characteristics of healthy and diseased leaves. The dataset contains more than 59,072 labeled images, offering a valuable resource for developing machine learning models and user-friendly tools capable of early detection and diagnosis of bean rust and bean anthracnose diseases. The aim of generating this dataset is to facilitate the development of machine learning tools that will empower agricultural extension officers, smallholder farmers, and other stakeholders in agriculture to promptly identify and diagnose affected crops, enabling timely and effective interventions before causing significant economic loss. By equipping farmers with the knowledge and tools to combat these diseases, we can safeguard bean production, enhance food security, and strengthen the economic well-being of smallholder farmers in Tanzania and other parts of Africa.