• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The role of asymptomatic carriers on the dynamics of a lymphatic filariasis model incorporating control strategies

    Thumbnail
    View/Open
    JA-CoCSE 2024.pdf (3.355Mb)
    Date
    2024-05-03
    Author
    Stephano, Mussa
    Mayengo, Maranya
    Irunde, Jacob
    Metadata
    Show full item record
    Abstract
    This study presents a mathematical model to investigate the patterns of transmission in lymphatic filariasis. The model considers chronic, acute, and asymptomatic individuals and integrates key control strategies. Random synthetic data is generated robustly through numerical solutions to closely replicate real-world scenarios and encompass uncertainties. The synthetic data adheres to a Gaussian distribution to ensure validity and reliability. Following the derivation of the basic and effective reproduction number using the next generation matrix approach, Latin Hypercube Sampling (LHS) and the Partial Rank Correlation Coefficient (PRCC) algorithm is utilized to assess the parameters that significantly influence the model outputs. The study examine the trajectories of different population compartments through numerical simulations over time, with particular emphasis on the role played by asymptomatic individuals in the transmission of the disease. To assess the potential for disease elimination, the study introduces a range of strategies involving protective measures, treatment interventions, and mosquito control. These strategies are determined through sensitivity analysis. The findings demonstrate that the simultaneous implementation of all control measures has a noteworthy effect in managing lymphatic filariasis. In conclusion, the proposed model enhances understanding of lymphatic filariasis dynamics and informs effective control strategies.
    URI
    https://doi.org/10.1016/j.rico.2024.100425
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2694
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV