• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Removal of fluoride and pathogens from water using the combined electrocoagulation-inline-electrolytic disinfection process

    Thumbnail
    View/Open
    Full text (775.5Kb)
    Date
    2023-07-01
    Author
    Njau, Oscar
    Otter, Philipp
    Machunda, Revocatus
    Rugaika, Anita
    Wydra, Kerstin
    Njau, Karoli
    Metadata
    Show full item record
    Abstract
    The consecutive removal of fluoride (defluoridation) and pathogens (disinfection) in drinking water through combined electrocoagulation-inline-electrolytic disinfection (EC–ECl2) process with aluminum and dimension-stable mixed oxide electrodes was reported in this study. Laboratory trials were conducted on the effects of flow rate, initial pH, current density, and supporting electrolytes for defluoridation and disinfection processes. The results have shown that with a flow rate of 10 L/h, initial pH of 6, the current density of 9.4 mA/cm2 (EC cell) and 3.1 mA/cm2 (ECl2 cell), supporting electrolyte concentration of 165 mg/L, and electrolysis time of 50 min, a defluoridation rate of 88% (initial concentration of 12.3 mg/L) and complete disinfection (initial fecal coliforms of 19,700 colony-forming units per 100 mL (CFU/100 mL)) can be reached. The final concentration of fluoride and pathogens in treated water was 1.44 mg/L and 0 CFU/100 mL, which are within the acceptable limit of the World Health Organization and the Tanzania Bureau of Standards of 1.5 mg/L and 0 CFU/100 mL, respectively. The EC–ECl2 system is a promising approach for consecutive defluoridation and disinfection of water to save millions from fluorosis and waterborne diseases. However, optimization potential with regard to energetic efficiency and system complexity was identified.
    URI
    https://doi.org/10.2166/ws.2023.146
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2132
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV