• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Cockle (Anadara granosa) shells-based hydroxyapatite and its potential for defluoridation of drinking water

    Thumbnail
    View/Open
    MEWESE.pdf (5.994Mb)
    Date
    2022-02-27
    Author
    Mtavangu, Stanslaus
    Mahene, Wilson
    Machunda, Revocatus
    Bruggen, Bart
    Njau, Karoli
    Metadata
    Show full item record
    Abstract
    The present study describes the synthesis and characterization of a hydroxyapatite (HAp)-based adsorbent derived from biogenic cockle (Anadara granosa) shells for the defluoridation of drinking water. The raw cockle shells and synthesized HAp were characterized by X-ray fluorescence spectroscopy (XRF), attenuated total reflection-Fourier transform infrared (ATR-FTIR), X-ray diffraction (XRD), Field emission scanning electron microscopes-energy dispersive X-ray (FESEM-EDX) and Brunauer-Emmett-Teller (BET) surface area analysis. As demonstrated by FTIR, cockle shells were found to be composed of calcium carbonate (97.4%), an aragonite polymorphous type of carbonate mineral. XRD and SEM analysis supported the formation of a nanocrystalline HAp with an average crystal size of 19.08 nm and 57.1 nm, respectively, with a surface area of 105.8 m2/g and a pore size of 5.6 nm, as depicted by BET. Batch adsorption experiments were conducted using the Box-Behnken design (BBD) with five input parameters: adsorbent dose (2–10 g/L), initial fluoride concentration (10–80 mg/L), contact time (0.5–24 h), reaction temperature (303–333 K), and pH. (3–11). BBD revealed the following opti- mum conditions: adsorbent dose (6 g/L), initial fluoride concentration (45 mg/L), contact period 12.25 h, re- action temperature (303 K), and pH 3. Experimentally, the adsorption of fluoride on HAp fitted well with the non-linear Langmuir isotherm and linear pseudo-second order kinetics, signifying the chemisorption process. A maximum adsorption capacity (qm) of 15.374 mg/g, which is closer to the experimental value of 14.053 mg/g, was presented by the Langmuir isotherm. Thermodynamically, the adsorption process was spontaneous, endo- thermic, and stable in nature. The defluoridation mechanism was through electrostatic attraction, ion exchange, hydrogen bonding, and precipitation. Furthermore, the synthesized HAp and bone char were used to examine their efficacy in defluoridating field water: HAp performed better at natural pH, where the treated water met WHO and TBS standards, whereas bone char had insufficient fluoride removal, especially at high fluoride levels. As a result, this study suggests that HAp derived from Anadara granosa shells could be a viable adsorbent for the defluoridation of drinking water.
    URI
    https://doi.org/10.1016/j.rineng.2022.100379
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/2050
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV