• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Real-Time IoT-Based Air Quality Monitoring and Health Hazards Indicator System for Mines Regions: A Case Study of Bulyanhulu Gold Mine

    Thumbnail
    View/Open
    Full text (407.5Kb)
    Date
    2023-07
    Author
    Flavian, Daudi
    Sinde, Ramadhani
    Kisangiri, Michael
    Metadata
    Show full item record
    Abstract
    Air quality in mining regions is a significant concern due to the release of pollutants from mining activities, posing health risks to nearby communities. However, limited information on air quality levels often leads to neglect of this issue. Inhaling pollutants like PM2.5/PM10, CO, CO2, SO2, and NO2 can result in chronic diseases such as respiratory issues, asthma, and cancer. To tackle this problem, a study suggests the implementation of a real-time Internet of Things (IoT)-based air quality monitoring and health hazards indicator system for mining regions. The proposed system utilizes a reliable wireless sensing system, incorporating sensors like MQ7, MQ135, MQ136, MiCS4514, PMS7003, and DHT22, along with ESP8266, STM32, ATmega328 microcontroller, LoRa shields, and the ThingSpeak IoT server. It ensures continuous operation with a self-contained design, including a solar charger shield connected to a photovoltaic solar panel and rechargeable battery. The smart sensing device continuously monitors air quality and uploads real-time data to the cloud through a coordinator node. The collected data is processed to calculate the Air Quality Index (AQI), which is analyzed to generate early warnings and indicate potential health hazards. The results are accessible through a web-based dashboard for easy visualization. This system simplifies monitoring and provides accurate pollutant data. It supports environmental stakeholders by aggregating and analyzing air quality data, generating reports, and facilitating public access to air quality information. Additionally, it helps identify health hazards, enabling informed decision-making, policy formulation, and mitigation strategies.
    URI
    https://doi.org/10.47760/ijcsmc.2023.v12i07.002
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1997
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV