• Login
    View Item 
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of magnetic cytosmear for the estimation of Plasmodium falciparum gametocyte density and detection of asexual stages in asymptomatic children

    Thumbnail
    View/Open
    Research Article (1.278Mb)
    Date
    2016-02-24
    Author
    Sumari, Deborah
    Grimberg, Brian T.
    Blankenship, D’Arbra
    Mugasa, Joseph
    Mugittu, Kefas
    Moore, Lee
    Gwakisa, Paul
    Zborowski, Maciej
    Metadata
    Show full item record
    Abstract
    Background: Conventional malaria parasite detection methods, such as rapid diagnostic tests (RDT) and light microscopy (LM), are not sensitive enough to detect low level parasites and identification of gametocytes in the peripheral blood. A modified and sensitive laboratory prototype, Magnetic Deposition Microscopy (MDM) was developed to increase the detection of sub-microscopic parasitaemia and estimation of gametocytes density in asymptomatic school children. Methods: Blood samples were collected from 303 asymptomatic school children from seven villages in Bagamoyo district in Tanzania. Participants were screened for presence of malaria parasites in the field using RDT and MDM whereas further examination of malaria parasites was done in the laboratory by LM. LM and MDM readings were used to calculate densities and estimate prevalence of asexual and sexual stages of the parasite. Results: Plasmodium falciparum parasites (asexual and sexual stages) were detected in 23 (7.6 %), 52 (17.2 %), and 59 (19.5 %) out of 303 samples by LM, RDT and MDM respectively. Gametocytes were detected in 4 (1.3 %) and 12 (4.0 %) out of the same numbers of samples by LM, and MDM, respectively. Likewise, in vitro results conducted on two laboratory strains of P. falciparum, 3D7 and NF54 to assess MDM sensitivity on gametocytes detection and its application on concentrating gametocytes indicated that gametocytes were enriched by MDM by 10-fold higher than LM. Late stages of the parasite strains, 3D7 and NF54 were enriched by MDM by a factor of 20.5 and 35.6, respectively. MDM was more specific than LM and RDT by 87.5 % (95 %, CI 71.2–89.6 %) and 89.0 % (95 % CI 82.9–91.4) respectively. It was also found that MDM sensitivity was 62.5 % (95 % CI 49.5–71.8) when compared with RDT while with LM was 36.5 % (95 % CI 32.2–60.5). Conclusions: These findings provide strong evidence that MDM enhanced detection of sub-microscopic P. falciparum infections and estimation of gametocyte density compared to current malaria diagnostic tools. In addition, MDM is superior to LM in detecting sub-microscopic gametocytaemia. Therefore, MDM is a potential tool for low-level parasitaemia identification and quantification with possible application in malaria transmission research.
    URI
    DOI 10.1186/s12936-016-1170-4
    http://dspace.nm-aist.ac.tz/handle/123456789/196
    Collections
    • Research Articles [LISBE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV