• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Water defluoridation using Al/Fe/Ti ternary metal oxide-loaded activated carbon by capacitive deionization

    Thumbnail
    View/Open
    Abstract (63.71Kb)
    Date
    2023-01-26
    Author
    Alfredy, Tusekile
    Elisadiki, Joyce
    Kim, Young-Deuk
    Jande, Yusufu
    Metadata
    Show full item record
    Abstract
    Capacitive deionization (CDI) is an environmentally friendly water treatment technology with low energy consumption. For a long time, activated carbon has been a preferred electrode material for CDI owing to its availability, easy preparation, low cost, and tunable textural properties. However, an unmodified carbon electrode does not significantly prefer anions, leading to unnecessary energy consumption for treating fluoridated water. Therefore, in this study, activated carbon materials loaded with trimetallic oxides (Al/Fe/Ti) at different mass ratios were prepared by a co-precipitation method in a temperature range between 23 and 27 °C to improve fluoride ion (F−) selectivity. The as-prepared composites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy analysis. The process parameters were investigated and optimized based on experimental data using the response surface methodology (Box–Behnken design). In competitive F− removal CDI experiments, the F− concentration was reduced from 5.15 mg L−1 to 1.18 mg L−1, below the allowable limit of 1.5 mg L−1 set by the World Health Organization. The metal oxide-modified activated carbon surface (AC–Al4Fe2.5Ti4) showed significantly improved electrochemical properties and enhanced capacitance compared to the unmodified one. The modified electrode material also showed the advantages of high removal efficiency and excellent regeneration performance after continuous electric adsorption–desorption cycles. Therefore, activated carbon–Al4Fe2.5Ti4 is a potential CDI electrode material for water defluoridation applications.
    URI
    https://doi.org/10.1039/D2EW00614F
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1824
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV