• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Human-Wildlife Conflict Early Warning System Using the Internet of Things and Short Message Service

    Thumbnail
    View/Open
    Full text (973.9Kb)
    Date
    2022-04
    Author
    Ronoh, E.
    Mirau, Silas
    Dida, Mussa
    Metadata
    Show full item record
    Abstract
    Human-wildlife conflict (HWC) is an important challenge to communities living in areas bordering wildlife game parks and reserves. It is more evident in the United Republic of Tanzania, whose economy depends on wildlife tourism. This paper proposes a low-cost and low-power early warning system using the Internet of Things (IoT) and Short Message Service (SMS) to support HWC respond teams in mitigating these challenges. The system comprises three primary units: sensing, processing, and alerting. The sensing unit consists of a Passive Infrared (PIR) sensor, a Global Positioning System (GPS), and a Raspberry Pi camera. The PIR sensor detects the proximity of the animal using the heat signature, GPS senses and records the current location, while the Raspberry Pi camera has the primary purpose of taking a picture after the PIR sensor detects the proximity of the animal. The processing unit with a Raspberry microcomputer performs data processing and image inferencing using the You Only Look Once (YOLO) algorithm. Last is the alerting unit, which includes a Global System for Mobile (GSM) communications module for sending SMS messages to the human-wildlife conflict response team and the nearer community response team leader whenever wild animals are spotted near the park’s border. The system detects, identifies, and reports the detected wild animals. The GPRS provides internet connectivity to support data collection, storage, and monitoring in the cloud.
    URI
    https://doi.org/10.48084/etasr.4662
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1789
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV