• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Assessment of contamination level of a Tanzanian river system with respect to trace metallic elements and their fate in the environment

    Thumbnail
    View/Open
    Full text (523.8Kb)
    Date
    2022-04-01
    Author
    Gebreyohannes, Netsanet
    Rwiza, Mwemezi
    Mahene, Wilson
    Metadata
    Show full item record
    Abstract
    The quality of water and sediments from a marginally-studied river was investigated with respect to As, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn including their fractionation behavior and environmental risk. Samples were collected along the Kou River that flows across two districts in the Manyara region of Tanzania. The leaching behavior of Fe was studied using sequential extraction fractionation and kinetics approach. The Kou water failed to meet the irrigation, aquatic, and biological life standards with respect to one of more trace metallic elements (TMEs). Fe concentration in the river water ranged from 4.1 to 5.38 mg/L, exceeding all the three standards. Six pollution indices were applied to assess the contamination and ecological risks of the nine trace metallic elements in the sediments. Overall, the metals were found to moderately contaminate the sediments. Cr, Fe, and Mn fell under the ‘severely polluted’ sediment quality class. Fe was the only metal that was found to significantly pollute both the river water and sediments. The Fe fractions in the sediments were in the order of residuals.Fe-Mn bound.or ganic bound.carbonate bound.water soluble.ion exchangeable; 7.8% of the total Fe content was bioavailable with a low potential to leach from the sediments. Under natural conditions, the sharpest release of the non-residual mobile fractions of Fe were identified to occur within the first 24 hours with the maximum Fe leached being 0.14% on the 12th day. None of the metals in the sediments were found with a poten tial to pose ecological risk
    URI
    https://doi.org/10.2166/ws.2022.002
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1672
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV