• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling nosocomial infection of COVID-19 transmission dynamics

    Thumbnail
    View/Open
    Full text (998.5Kb)
    Date
    2022-06
    Author
    Masandawa, Lemjini
    Mirau, Silas
    Mbalawata, Isambi
    Paul, James
    Kreppel, Katharina
    Msamba, Oscar
    Metadata
    Show full item record
    Abstract
    COVID-19 epidemic has posed an unprecedented threat to global public health. The disease has alarmed the healthcare system with the harm of nosocomial infection. Nosocomial spread of COVID-19 has been discovered and reported globally in different healthcare facilities. Asymptomatic patients and super-spreaders are sough to be among of the source of these infections. Thus, this study contributes to the subject by formulating a 𝑆𝐸𝐼𝐻𝑅 mathematical model to gain the insight into nosocomial infection for COVID-19 transmission dynamics. The role of personal protective equipment 𝜃 is studied in the proposed model. Benefiting the next generation matrix method, 𝑅0 was computed. Routh–Hurwitz criterion and stable Metzler matrix theory revealed that COVID-19-free equilibrium point is locally and globally asymptotically stable whenever 𝑅0 < 1. Lyapunov function depicted that the endemic equilibrium point is globally asymptotically stable when 𝑅0 > 1. Further, the dynamics behavior of 𝑅0 was explored when varying 𝜃. In the absence of 𝜃, the value of 𝑅0 was 8.4584 which implies the expansion of the disease. When 𝜃 is introduced in the model, 𝑅0 was 0.4229, indicating the decrease of the disease in the community. Numerical solutions were simulated by using Runge–Kutta fourth order method. Global sensitivity analysis is performed to present the most significant parameter. The numerical results illustrated mathematically that personal protective equipment can minimizes nosocomial infections of COVID-19.
    URI
    https://doi.org/10.1016/j.rinp.2022.105503
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1662
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV