• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • Research Articles [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Deep Learning-based Mobile Application for Segmenting Tuta Absoluta’s Damage on Tomato Plants

    Thumbnail
    View/Open
    Full text (1.830Mb)
    Date
    2021-10
    Author
    Loyani, Loyani
    Machuve, Dina
    Metadata
    Show full item record
    Abstract
    With the advances in technology, computer vision applications using deep learning methods like Convolutional Neural Networks (CNNs) have been extensively applied in agriculture. Deploying these CNN models on mobile phones is beneficial in making them accessible to everyone, especially farmers and agricultural extension officers. This paper aims to automate the detection of damages caused by a devastating tomato pest known as Tuta Absoluta. To accomplish this objective, a CNN segmentation model trained on a tomato leaf image dataset is deployed on a smartphone application for early and real-time diagnosis of the pest and effective management at early tomato growth stages. The application can precisely detect and segment the shapes of Tuta Absoluta-infected areas on tomato leaves with a minimum confidence of 70% in 5 seconds only.
    URI
    https://doi.org/10.48084/etasr.4355
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1618
    Collections
    • Research Articles [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV