Show simple item record

dc.contributor.authorBaino, Allan
dc.contributor.authorHopcraft, Grant
dc.contributor.authorKendall, Corinne
dc.contributor.authorNewton, Jason
dc.contributor.authorBehdenna, Abdelkader
dc.contributor.authorMunishi, Linus
dc.date.accessioned2022-04-05T09:59:29Z
dc.date.available2022-04-05T09:59:29Z
dc.date.issued2022-02
dc.identifier.urihttps://doi.org/10.1002/ece3.8726
dc.identifier.urihttps://dspace.nm-aist.ac.tz/handle/20.500.12479/1439
dc.descriptionThis research article published by John Wiley & Sons, Ltd, 2022en_US
dc.description.abstract1. Dietary studies in birds of prey involve direct observation and examination of food remains at resting and nesting sites. Although these methods accurately identify diet in raptors, they are time-consuming, resource-intensive, and associated with biases from the feeding ecology of raptors like Gyps vultures. Our study set out to estimate diet composition in Gyps vultures informed by stable isotopes that provide a good representation of assimilated diet from local systems. 2. We hypothesized that differences in Gyps vulture diet composition is a function of sampling location and that these vultures move between Serengeti National Park and Selous Game Reserve to forage. We also theorized that grazing ungulates are the principal items in Gyps vulture diet. 3. Through combined linear and Bayesian modeling, diet derived from δ13C in Gyps vultures consisted of grazing herbivores across sites, with those in Serengeti National Park consuming higher proportions of grazing herbivores (>87%). δ13C differences in vulture feather subsets did not indicate shifts in vulture diet and combined with blood δ13C, vultures fed largely on grazers for ~159 days before they were sampled. Similarly, δ15N values indicated Gyps vultures fed largely on herbivores. δ34S ratios separated where vultures fed when the two sites were compared. δ34S variation in vultures across sites resulted from baseline differences in plant δ34S values, though it is not possible to match δ34S to specific locations. 4. Our findings highlight the relevance of repeated sampling that considers tissues with varying isotopic turnover and emerging Bayesian techniques for dietary studies using stable isotopes. Findings also suggested limited vulture movement between the two local systems. However, more sampling coupled with environmental data is required to fully comprehend this observation and its implication to Gyps vulture ecology and conservation.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley & Sons, Ltden_US
dc.subjectAfrican white-backed vultureen_US
dc.subjectDiet compositionen_US
dc.subjectRüppell's vultureen_US
dc.subjectStable isotopesen_US
dc.subjectTrophic discrimination factorsen_US
dc.titleWe are what we eat, plus some per mill: Using stable isotopes to estimate diet composition in Gyps vultures over space and timeen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record