• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Molecular Investigation of the Solvent Influence on Inter- and Intra-Molecular Hydrogen Bond Interaction of Linamarin

    Thumbnail
    View/Open
    Fulltext (3.954Mb)
    Date
    2022-02-11
    Author
    Paul, Lucas
    Deogratias, Geradius
    Shadrack, Daniel
    Mudogo, Celestin
    Mtei, Kelvin
    Machunda, Revocatus
    Paluch, Andrew
    Ntie‐Kang, Fidele
    Metadata
    Show full item record
    Abstract
    Linamarin has been reported to have anticancer activities; however, its extraction and isolation using different solvents yield a low amount. Therefore, understanding the physical prop‐ erties, such as solvents’ solubility, membrane permeability and lipophilicity and how they are asso‐ ciated with different solvents, is a paramount topic for discussion, especially for its potential as a drug. Linamarin has a sugar moiety with many polar groups responsible for its physical properties. Following current trends, a molecular dynamics simulation is performed to investigate its physical properties and how different solvents, such as water, methanol (MeOH), dimethyl sulfoxide (DMSO) and dichloromethane (DCM), affect such properties. In this work, we have investigated the influence of intermolecular and intramolecular hydrogen bonding and the influence of polar and non‐polar solvents on the physical properties of linamarin. Furthermore, solvation free‐energy and electronic structure analysis are performed. The structural analysis results show that the polar groups of linamarin have strong interactions with all solvents except the etheric oxygen groups. A detailed analysis shows intermolecular hydrogen bonding between polar solvents (water, MeOH and DMSO) and the hydroxyl oxygens of linamarin. Water exhibits the strongest interaction with linamarin’s functional groups among the investigated solvents. The findings show that within the first solvation shell, the number of water molecules is greatest, while MeOH has the fewest. Cen‐ trally to the structural analysis, solvation free energy confirms DMSO to be the best solvent since it prefers to interact with linamarin over itself, while water prefers to interact with itself. While the solute–solvent interactions are strongest between linamarin and water, the solvent–solvent interac‐ tions are strongest in water. As a result, the solvation free‐energy calculations reveal that linamarin solvation is most favourable in DMSO.
    URI
    https://doi.org/10.3390/pr10020352
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1424
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV