• Login
    View Item 
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    •   NM-AIST Home
    • Life sciences and Bio-engineering
    • Research Articles [LISBE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    16S rRNA Amplicons Survey Revealed Unprecedented Bacterial Community in Solid Biomedical Wastes

    Thumbnail
    View/Open
    Research Article (498.5Kb)
    Date
    2015
    Author
    Mwaikono, Kilaza Samson
    Maina, Solomon
    Sebastian, Aswathy
    Kapur, Vivek
    Gwakisa, Paul
    Metadata
    Show full item record
    Abstract
    Despite known risks of inappropriate disposal of biomedical solid waste; most cities in developing countries are still disposing unsorted and untreated solid biomedical waste in common dumpsites. While many studies reported the presence of pathogens in fresh biomedical waste from hospitals, none has reported on the abundance and diversity of bacterial community in aged solid biomedical waste from a common dumpsite. A qualitative survey was done to identify types of solid biomedical waste on the dumpsite. Soils, sludge or washings of biomedical wastes were sampled. Total DNA was extracted and v4 region of 16S rRNA amplicons were sequenced using an Illumina MiSeq platform. A total of 1,706,442 sequences from 15 samples passed quality control. The number of sequences per sample ranged from 70664 to 174456 (mean 121765, SD 35853). Diversity was high with an InvSimpson index of 63 (Range 5 – 496, SD 121). Thirty five phyla were identified, but only 9 accounted for 96% of all sequences. The dominant phyla were Proteobacteria 37.4%, Firmicutes 34.4%, Bacteroidetes 14.1 %, Actinobacteria 5.6% and Chloroflex 1.7%. Catchall analysis predicted a mean of 9399 species per sample. Overall, 31402 operational taxonomic units (OTUs) were detected, however, only 19.8% (6,202) OTUs were found more than ten times. The most predominant OTUs were Proteinclasticum (10.4%), Acinetobacter (6.9), Halomonas (3.9), Pseudomonas (1.7%), Escherichia/Shigella 1.5% and Planococcus (1.3%). Proteiniclasticum spp and Acinetobacter spp were found in 67% (10/15) of all samples at relative abundance of 1%. Taxonomic-to-phenotype mapping revealed the presence of 36.2% related to bacteria involved in dehalogenation, 11.6% degraders of aromatic hydrocarbons, 14.8% chitin degraders, 8.5% chlorophenol degradation and Atrazine metabolism 8.3%. Taxonomy-to human pathogen mapping found 34% related to human pathogens and 39.4% were unknown. Conclusions There’s rich and diverse bacterial community in aged solid biomedical waste. Some of the predominant OTUs are related to bacteria of industrial use.We found a good number of OTUs mapping to human pathogens. Most of OTUs mapped to unknown metabolism and also to group unknown whether they human pathogens or not. To our knowledge, this is the first reports on bacteria related to industrial use from solid biomedical waste. This finding will facilitate to design further research using functional metagenomics to better understand the potential of bacteria from aged solid biomedical waste.
    URI
    DOI:10.12691/ajmr-3-4-3
    http://dspace.nm-aist.ac.tz/handle/123456789/141
    Collections
    • Research Articles [LISBE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV