• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regeneration and carboxymethylation of cellulose and its derivatives: application assessment for brewery wastewater treatment

    Thumbnail
    View/Open
    Abstract (83.99Kb)
    Date
    2021-02-13
    Author
    Mwesiga, J. J.
    Rwiza, Mwemezi
    Kalmykova, E. N.
    Metadata
    Show full item record
    Abstract
    Coagulation–flocculation technique is usually employed in wastewater treatment by applying conventional inorganic materials such as alum and ferric chloride. Due cost to environmental challenges associated with the use of inorganic flocculants, biopolymers are gaining ground as alternative water treatment materials. In the present study, native cellulose and hemicelluloses isolated from sugarcane bagasse were used in the removal of turbidity and biological oxygen demand from industrial wastewater. Isolated native cellulose was modified to form regenerated cellulose (RC). Also, native cellulose, hemicellulose and RC were carboxymethylated using Na-chloroacetate. Thereafter, the functional groups on the carboxymethylated biopolymers were examined using Fourier transform infrared spectroscopy and the carbon–hydrogen–nitrogen–sulfur–oxygen elemental analysis. The degree of substitution (DS) for regenerated and carboxymethylated cellulosic materials was measured using recommended standard methods. Carboxymethyl cellulose (CMC) with 1.3 DS reduced turbidity and biological oxygen demand by 62.2 and 64%, respectively. Carboxymethyl regenerated cellulose (CMC-II) at 1.1 DS reduced turbidity and by 55.6 and 60%, respectively. Carboxymethyl hemicellulose (CMH) with 1.4 DS was capable of reducing turbidity and biological oxygen demand by 45.7 and 47%, respectively. Carboxymethyl cellulose and hemicellulose have rarely been used in the treatment of brewery wastewater. In the present study, these two novel materials showed a good prospect in removing biological oxygen demand and turbidity.
    URI
    https://doi.org/10.1007/s13762-021-03190-9
    https://dspace.nm-aist.ac.tz/handle/20.500.12479/1126
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV