• English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
    Research Collection
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
  • New user? Click here to register. Have you forgotten your password?
NM-AIST Repository
  1. Home
  2. Browse by Author

Browsing by Author "Ishengoma, Deus"

Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Genetic diversity of Plasmodium falciparum reticulocyte binding protein homologue-5, which is a potential malaria vaccine candidate: baseline data from areas of varying malaria endemicity in Mainland Tanzania
    (BioMed Central, 2025-01-27) Kisambale, Angelina; Pereus, Dativa; Mandai, Salehe; Lyimo, Beatus; Bakari, Catherine; Chacha, Gervas; Mbwambo, Ruth; Moshi, Ramadhan; Petro, Daniel; Challe, Daniel; Seth, Misago; Madebe, Rashid; Budodo, Rule; Aaron, Sijenunu; Mbwambo, Daniel; Lusasi, Abdallah; Kajange, Stella; Lazaro, Samwel; Kapologwe, Ntuli; Mandara, Celine; Ishengoma, Deus
    Background The limited efficacy of the two recently approved malaria vaccines, RTS,S/AS01 and R21/Matrix- M™, highlights the need for alternative vaccine candidate genes. Plasmodium falciparum Reticulocyte Binding Protein Homologue 5 (Pfrh5) is a promising malaria vaccine candidate, given its limited polymorphism, its essential role in parasite survival, a lack of immune selection pressure and higher efficacy against multiple parasites strains. This study evaluated the genetic diversity of Pfrh5 gene among parasites from regions with varying malaria transmission intensities in Mainland Tanzania, to generate baseline data for this potential malaria vaccine candidate. Methods This study utilized secondary data of 697 whole-genome sequences which were generated by the MalariaGEN Community Network. The samples which were sequenced to generated the data were collected between 2010 and 2015 from five districts within five regions of Mainland Tanzania, with varying endemicities (Morogoro-urban district in Morogoro region, Muheza in Tanga, Kigoma-Ujiji in Kigoma, Muleba in Kagera, and Nachingwea district in Lindi region). Wright's fixation index (FST), Wright’s inbreeding coefficient (Fws), Principal component analysis (PCA), nucleotide diversity (π), haplotype network, haplotype diversity (Hd), Tajima's D, and Linkage disequilibrium (LD) were used to assess the diversity of the gene. Results Of the sequences used in this study, 84.5% (n = 589/697) passed quality control and 313 (53.1%) were monoclonal (contained infections from a single strain of P. falciparum) and were used for haplotype diversity and haplotype network analysis. High within-host diversity (Fws < 0.95) was reported in Kigoma-Ujiji (60.7%), Morogoro-urban (53.1%), and Nachingwea (50.8%), while Muleba (53.9%) and Muheza (61.6%) had low within-host diversity (Fws ≥ 0.95). PCA did not show any population structure and the mean FST value was 0.015. Low nucleotide diversity values were observed across the study sites (mean π = 0.00056). A total of 27 haplotypes were observed among the 313 monoclonal samples and under-fives exhibited higher haplotype counts. The Pf3D7 was detected as Hap_1, which occurred in 16/313 (5.1%) monoclonal sequences. Negative Tajima's D values were observed among the parasite populations in all the study sites. Conclusion Low levels of polymorphism in the pfrh5 gene were observed based on low nucleotide and haplotype diversity, a lack of population structure and negative Tajima’s D values. This study provides essential data on the diversity of the Pfrh5 gene indicating that it can be considered in the development of the next generation malaria vaccines. Robust and intensive studies of this and other candidate genes are crucial to support the prioritization of the Pfrh5 gene for potential inclusion in a broadly cross-protective malaria vaccine
  • Loading...
    Thumbnail Image
    Item
    Molecular marker of Plasmodium falciparum resistance to chloroquine (Pfcrt) in an area with long history of antimalarial resistance
    (American Journal of Research Communication, 2014) Shayo, Alex; Ishengoma, Deus; Baraka, Vito; Madebe, Rashid; Shahada, Francis; Buza, Joram
    Background High levels Plasmodium falciparum resistance to Chloroquine (CQ) compelled Tanzania to replace CQ with Suphadoxine-pyrimethamine (SP) as first-line antimalarial in 2001 which was however replaced with Artemether Lumefantrine (AL) in 2006. Studies in Malawi have shown sufficient recovery of CQ-sensitivity after its withdrawal warranting re-using CQ in combination with other antimalarials in the future. This paper assessed the level of CQ resistance at molecular level in an area with long history of antimalarial resistance in North-eastern Tanzania. Materials and Methods Samples were obtained from patients recruited in a clinical trial to assess in vivo efficacy of AL at Mkuzi health centre in Muheza district, North-eastern Tanzania. DNA was extracted from venous blood using Qiagen extraction midi kit. The samples were analyzed for single nucleotide polymorphisms (SNPs) in the P. falciparum CQ resistance transporter gene (Pfcrt; codons 72–76) using polymerase chain reaction (PCR) and sequence-specific oligonucleotide probe (SSOP) enzymelinked immunosorbent assay (ELISA). Prevalence of Pfcrt haplotypes before and after treatment samples was compared. Results A total of 104 microscopically positive samples were genotyped for the Pfcrt haplotypes. Of these, 78 (75%) samples contained wild-type (CVMNK) haplotype, 21 (20.2%) contained resistant (CVIET) haplotype while 5 (4.8%) samples had mixed (CVMNK/CVIET) infections. There were no SVMNT haplotype among the samples. The prevalence of the Pfcrt wild-type CVMNK haplotype was high in the study area reaching over 76%. No significant selection of the Pfcrt wild-type CVMNK haplotype after treatment with AL was observed (p ˃ 0.05). Conclusions Compared to the previous studies in the study area, the prevalence of CQ sensitive parasites has increased in the study area. However the rate of sensitivity restoration in this study site with long history of antimalarial drug resistance was slower than rates reported from other parts of Tanzania. These findings suggest complete CQ sensitivity restoration and hence re-introduction of CQ (e.g. in a drug combination) in the study area will most likely take longer than previously anticipated.
  • Loading...
    Thumbnail Image
    Item
    Monitoring of efficacy and safety of artemisininbased anti-malarials for treatment of uncomplicated malaria: a review of evidence of implementation of anti-malarial therapeutic efficacy trials in Tanzania
    (BioMed Central, 2015) Shayo, Alex; Buza, Joram; Ishengoma, Deus
    Background: Prompt diagnosis and effective treatment are considered the cornerstones of malaria control and artemisinin-based combination therapy (ACT) is currently the main anti-malarial drugs used for case management. After deployment of ACT due to widespread parasite resistance to the cheap and widely used anti-malarial drugs, chloroquine and sulphadoxine/pyrimethamine, the World Health Organization recommends regular surveillance to monitor the efficacy of the new drugs. The present paper assessed the implementation of anti-malarial efficacy testing for monitoring the therapeutic efficacy of ACT for treatment of uncomplicated malaria in Tanzania before and after policy changes in 2006. Methods: A literature search was performed for published clinical trials conducted in Tanzania from 2001 to 2014. It focused on studies which assessed at least one form of ACT for treatment of uncomplicated falciparum malaria in children less than 10 years and reported efficacy and safety of the tested anti-malarials. References were imported into the Endnote library and duplicates removed. An electronic matrix was developed in Microsoft Excel followed by full text review with predetermined criteria. Studies were independently assessed and information related to ACT efficacy and safety extracted. Results: Nine papers were selected from 125 papers screened. The efficacy of both artemether-lumefantrine (AL) and artesunate-amodiaquine (AS + AQ) against uncomplicated P. falciparum infections in Tanzania was high with PCRcorrected cure rates on day 28 of 91-100% and 88-93.8%, respectively. The highest day-3 parasite positivity rate was 1.4%. Adverse events ranged from mild to serious but were not directly attributed to the drugs. Conclusion: ACT is efficacious and safe for treatment of uncomplicated malaria in Tanzania. However, few trials were conducted in Tanzania before and after policy changes in 2006 and thus more surveillance should be urgently undertaken to detect future changes in parasite sensitivity to ACT.
  • Loading...
    Thumbnail Image
    Item
    Potential Opportunities and Challenges of Deploying Next Generation Sequencing and CRISPR-Cas Systems to Support Diagnostics and Surveillance Towards Malaria Control and Elimination in Africa
    (Frontiers, 2022-07-13) Lyimo, Beatus; Popkin-Hall, Zachary; Giesbrecht, David; Mandara, Celine; Madebe, Rashid; Bakari, Catherine; Pereus, Dativa; Seth, Misago; Ngamba, Ramadhan; Mbwambo, Ruth; MacInnis, Bronwyn; Mbwambo, Daniel; Garimo, Issa; Chacky, Frank; Aaron, Sijenunu; Lusasi, Abdallah; Molteni, Fabrizio; Njau, Ritha; Cunningham, Jane; Lazaro, Samwel; Mohamed, Ally; Juliano, Jonathan; Bailey, Jeffrey; Ishengoma, Deus
    Recent developments in molecular biology and genomics have revolutionized biology and medicine mainly in the developed world. The application of next generation sequencing (NGS) and CRISPR-Cas tools is now poised to support endemic countries in the detection, monitoring and control of endemic diseases and future epidemics, as well as with emerging and re-emerging pathogens. Most low and middle income countries (LMICs) with the highest burden of infectious diseases still largely lack the capacity to generate and perform bioinformatic analysis of genomic data. These countries have also not deployed tools based on CRISPR-Cas technologies. For LMICs including Tanzania, it is critical to focus not only on the process of generation and analysis of data generated using such tools, but also on the utilization of the findings for policy and decision making. Here we discuss the promise and challenges of NGS and CRISPR-Cas in the context of malaria as Africa moves towards malaria elimination. These innovative tools are urgently needed to strengthen the current diagnostic and surveillance systems. We discuss ongoing efforts to deploy these tools for malaria detection and molecular surveillance highlighting potential opportunities presented by these innovative technologies as well as challenges in adopting them. Their deployment will also offer an opportunity to broadly build in-country capacity in pathogen genomics and bioinformatics, and to effectively engage with multiple stakeholders as well as policy makers, overcoming current workforce and infrastructure challenges. Overall, these ongoing initiatives will build the malaria molecular surveillance capacity of African researchers and their institutions, and allow them to generate genomics data and perform bioinformatics analysis in-country in order to provide critical information that will be used for real-time policy and decision-making to support malaria elimination on the continent.
  • Loading...
    Thumbnail Image
    Item
    Prevalence of subpatent Plasmodium falciparum infections in regions with varying transmission intensities and implications for malaria elimination in Mainland Tanzania
    (PMC PubMed Central, 2025-03-26) Seth, Misago; Popkin-Hall, Zachary; Madebe, Rashid; Budodo, Rule; Bakari, Catherine; Lyimo, Beatus; Giesbrecht, David; Moshi, Ramadhani; Mbwambo, Ruth; Francis, Filbert; Pereus, Dativa; Mbata, Doris; Challe, Daniel; Mandai, Salehe; Chacha, Gervas A; Kisambale, Angelina; Mbwambo, Daniel; Aaron, Sijenunu; Lusasi, Abdallah; Lazaro, Samwel; Mandara, Celine; Bailey, Jeffrey; Juliano, Jonathan; Gutman, Julie; Ishengoma, Deus
    Background Subpatent Plasmodium falciparum infections, defined as infections with parasite density below the detection limit of routine malaria diagnostic tests, contribute to infectious reservoirs, sustain transmission, and cause the failure of elimination strategies in target areas. This study assessed the prevalence of subpatent P. falci parum infections and associated risk factors in 14 regions of Mainland Tanzania. Methods The study used samples randomly selected from RDT‑negative dried blood spots (DBS) (n = 2685/10,101) collected in 2021 at 100 health facilities across 10 regions of Mainland Tanzania, and four communities in four addi tional regions. The regions were selected from four transmission strata; high (five regions), moderate (three regions), low (three regions), and very low (three regions). DNA was extracted by Tween‑Chelex method, and the Pf18S rRNA gene was amplified by quantitative polymerase chain reaction (qPCR). Logistic regression analysis was used to assess the associations between age groups, sex, fever status, and transmission strata with subpatent infection status, while linear regression analysis was used to assess the association between these factors and subpatent parasite density. Results Of the selected samples, 525/2685 (19.6%) were positive by qPCR for P. falciparum, and the positivity rates varied across different regions. Under‑fives (aOR: 1.4, 95% CI 1.04–1.88; p < 0.05) from health facilities had higher odds of subpatent infections compared to other groups, while those from community surveys (aOR: 0.33, 95% CI 0.15–0.72; p = 0.005) had lower odds. Participants from very low transmission stratum had significantly lower odds of subpatent infection compared to those from high transmission stratum (aOR = 0.53, 95% CI = 0.37–0.78; p < 0.01). The log‑trans formed median parasite density (interquartile range) was 6.9 (5.8–8.5) parasites/µL, with significantly higher parasitae mia in the low transmission stratum compared to a very low one (11.4 vs 7.0 parasites/µL, p < 0.001). Conclusion Even in very low transmission settings, the prevalence of subpatent infections was 13%, and in low trans mission settings it was even higher at 29.4%, suggesting a substantial reservoir that is likely to perpetuate transmis sion but can be missed by routine malaria case management strategies. Thus, control and elimination programmes may benefit from adoption of more sensitive detection methods to ensure that a higher proportion of subpatent infections are detected.
  • Loading...
    Thumbnail Image
    Item
    Therapeutic efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in North-Eastern Tanzania
    (BioMed Central, 2014) Shayo, Alex; Mandara, Celine; Shahada, Francis; Buza, Joram; Lemnge, Martha; Ishengoma, Deus
    Background: The World Health Organization recommends that regular efficacy monitoring should be undertaken by all malaria endemic countries that have deployed artemisinin combination therapy (ACT). Although ACT is still efficacious for treatment of uncomplicated malaria, artemisinin resistance has been reported in South East Asia suggesting that surveillance needs to be intensified by all malaria endemic countries. This study assessed the efficacy and safety of artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria in Muheza district of north-eastern Tanzania, an area where the transmission has significantly declined in recent years. Methods: Eighty eight children (aged 6 months to 10 years) with uncomplicated falciparum malaria were recruited into the study. The patients were treated with standard doses of AL and followed up for 28 days. The primary end point was parasitological cure on day 28 while the secondary end points included: improvement in haemoglobin levels and occurrence, and severity of adverse events. Results: A total of 163 febrile patients were screened, out of which 88 patients (56 under-fives and 32 aged ≥5 years) were enrolled and 79 (89.8%) completed the 28 days of follow-up. There were no cases of early treatment failure whilst 40 (78.4%) under-fives and 21(75.0%) older children had adequate clinical and parasitological response (ACPR) before PCR correction. Late clinical failure was seen in 5.6% (n = 51) and 3.6% (n = 28) of the under-fives and older children respectively; while 15.7% and 21.6% had late parasitological failure in the two groups respectively. After PCR correction, ACPR was 100% in both groups. Reported adverse events included cough (49.7%), fever (20.2%), abdominal pain (10.1%), diarrhoea (1.3%), headache (1.3%) and skin rashes (1.3%). Conclusion: This study showed that AL was safe, well-tolerated and efficacious for treatment of uncomplicated falciparum malaria. Since Muheza has historically been a hotspot of drug resistance (e.g. pyrimethamine, chloroquine, and SP), surveillance needs to be continued to detect future changes in parasite sensitivity to ACT.
Other Links
  • Tanzania Research Repository
  • CERN Document Server
  • Confederation of Open Access Repositories
  • Directory of Open Access Books (DOAB)
  • Directory of Open Access Journals (DOAJ)
useful resources
  • Emerald Database
  • Taylor & Francis
  • EBSCO Host
  • Research4Life
  • Elsevier Journal
Contact us
  • library@nm-aist.ac.tz
  • The Nelson Mandela African institution of science and Technology, 404 Nganana, 2331 Kikwe, Arumeru P.O.BOX 447, Arusha

Nelson Mandela - AIST | Copyright © 2025

  • Privacy policy
  • End User Agreement
  • Send Feedback