Fish bladder-based activated porous carbon/co3o4/tio2 composite electrodes for supercapacitors

Loading...
Thumbnail Image

Date

2020-02

Journal Title

Journal ISSN

Volume Title

Publisher

NM-AIST

Abstract

Supercapacitors as energy storage devices depend on electrode materials, electrolyte and conductive additives. In relation to the above, this master’s dissertation specifically provides a scientific understanding and knowledge to the society on the use of fish bladder derived porous carbon for cobalt oxide/titanium dioxide/activated carbon (Co3O4/TiO2/Ac) composite as electrode materials for supercapacitor applications. Fish bladder was used as a carbon source for the composite after carbonization and chemical activation. Composites of Co3O4/TiO2/Ac, Co3O4/Ac, and TiO2/Ac were later synthesized using simple impregnation method followed by heat treatment and thereafter in-depth investigation on the active material was carried out through material characterization and electrochemical testing. X-ray diffraction and scanning electron microscopy (SEM) revealed that Co3O4 and TiO2 nano phases were well embedded over carbon matrices. Fourier transfer infra-red (FT-IR) measurements showed that the active material had oxygen containing functional groups. Cyclic voltammetry curves demonstrated that specific capacitance of the active material was 946 Fg -1 for Co3O4/TiO2/Ac as compared to Co3O4/Ac, TiO2/Ac, and Ac with specific capacitances of 845 F g-1 , 340 F g -1 , and 308 F g -1 , respectively at a scan rate of 5 mVs -1 . Impedance spectroscopy revealed good capacitive behavior with a series resistance of 0.5 Ω, 0.52 Ω, 0.6 Ω, and 1.1 Ω for Ac, Co3O4/Ac, Co3O4/TiO2/Ac, and TiO2/Ac, respectively. Excellent electrochemical performances observed for the Co3O4/TiO2/Ac electrode was a result of individual contribution of different characteristics of the binary metal oxides such as improved electric conductivity and wettability of the composites associated with porous carbon and TiO2.

Sustainable Development Goals

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Master’s in Materials Science and Engineering at the Nelson Mandela African Institution of Science and Technology

Keywords

Research Subject Categories::NATURAL SCIENCES

Citation