• Login
    View Item 
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • PhD Theses and Dissertations [CoCSE]
    • View Item
    •   NM-AIST Home
    • Computational and Communication Science Engineering
    • PhD Theses and Dissertations [CoCSE]
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Molecular Diversity of Bacteria from a Municipal Dumpsite: Implications to Public Health

    Thumbnail
    View/Open
    Fulltext (6.064Mb)
    Date
    2016
    Author
    Mwaikono, Kilaza Samson
    Metadata
    Show full item record
    Abstract
    Despite known risks of inappropriate disposal of solid wastes; most cities in developing countries dispose waste in open dumpsite where humans, animals and microbes interact. This study was done in Arusha municipal dumpsite, Tanzania to investigate the abundance and diversity of bacteria, compare the faecal microbiota of pigs scavenging on dumpsite and indoor reared pigs, and also determine the resistance profile of enteric bacteria from the dumpsite. Domestic wastes, solid biomedical wastes, sludge from the river near the dumpsite and faecal materials of pigs were sampled. Total DNA was extracted and the variable region four (v4) of the 16S rRNA gene was sequenced using high throughput Illumina MiSeq platform. The quality control of sequences and the statistical analyses was performed using Mothur platform. A total of 8,469,294 quality sequences were generated. The mean of bacterial species per sample was 8,243. Diversity was high with an average InvSimpson index of 44.2. Thirty-five bacterial phyla dominated by Firmicutes (38%), Proteobacteria (35%), Bacteroidetes (13%) and Actinobacteria (3%) were found. Overall, 76,862 operational taxonomic units (OTUs) dominated by Acinetobacter (12.1%), Clostridium sensu stricto (4.8%), Proteinclasticum and Lactobacillus (each 3.4%), Enterococcus (2.9%) and Escherichia/Shigella (1.7%) were revealed. There was a significant difference in faecal microbiota between scavenging and indoor reared pigs. Pathogenic genera like Brucella, Rickettsia and Listeria were exclusive to scavenging pigs. In solid biomedical waste, 36.2% of OTUs were related to dehalogenation, 11.6% degraders of aromatic hydrocarbons, 8.5% chlorophenol degradation and Atrazine metabolism 8.3%, and bacteria related to pathogens were 34%. Escherichia/ Shigella, Bacilli and Proteiniclasticum were predominant enteric bacteria. Some bacteria in scavenging pigs had 99% sequence similarity to pathogenic Escherichia furgosonii, Shigella sonnei, Enterococcus faecium and Escherichia coli O154:H4. Over 50% of the isolates were multidrug resistant. The study provides a comprehensive report on diversity of bacteria in Arusha municipal dumpsite. The high species richness shows the complexity of this man-made ecosystem, and calls for further research to assess for a link between human diseases and the dumpsite. This would provide insight into proper disposal of the waste, as well as, limit the risks to human health associated with the dumpsites.
    URI
    http://dspace.nm-aist.ac.tz/handle/123456789/56
    Collections
    • PhD Theses and Dissertations [CoCSE]

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV