Show simple item record

dc.contributor.authorMdegela, Lawrence
dc.contributor.authorMunicio, Esteban
dc.contributor.authorBock, Yorick
dc.contributor.authorMannens, Erik
dc.contributor.authorLuhanga, Edith
dc.contributor.authorLeo, Judith
dc.date.accessioned2023-11-14T08:55:15Z
dc.date.available2023-11-14T08:55:15Z
dc.date.issued2023-02-20
dc.identifier.urihttps://doi.org/10.20944/preprints202301.0558.v2
dc.identifier.urihttps://dspace.nm-aist.ac.tz/handle/20.500.12479/2429
dc.descriptionA research article was submitted by artificial intelligence and machine learningen_US
dc.description.abstractAdvancements in Machine Learning techniques, availability of more data-sets, and 1 increased computing power have enabled a significant growth in a number research areas. Predicting, 2 detecting and classifying complex events in earth systems which by nature are difficult to model 3 is one of such areas. In this work, we investigate the application of different machine learning 4 techniques for detecting and classifying extreme rainfall events in a sub-catchment within Pangani 5 River Basin, found in Northern Tanzania. Identification and classification of extreme rainfall event 6is a preliminary crucial task towards success in predicting rainfall-induced river floods. To identify 7 a rain condition in the selected sub-catchment, we use data from five weather stations which have 8 been labeled for the whole sub-catchment. In order to assess which Machine Learning technique 9 suits better for rainfall classification, we apply five different algorithms in a historical dataset for the 10 period of 1979 to 2014. We evaluate the performance of the models in terms of precision and recall, 11 reporting Random Forest and XGBoost as the ones with best overall performance. However, since the 12 class distribution is imbalanced, the generic Multi-layer Perceptron performs best when identifying 13 the heavy rainfall events, which are eventually the main cause of rainfall-induced river floods in the 14 Pangani River Basin.en_US
dc.language.isoenen_US
dc.publisherPreprintsen_US
dc.subjectHeavy rainfallen_US
dc.subjectRiver floodsen_US
dc.subjectMachine learningen_US
dc.titleExtreme Rainfall Events Classification Using Machine Learning for Kikuletwa River Floodsen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record