• Login
    View Item 
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    •   NM-AIST Home
    • Materials, Energy, Water and Environmental Sciences
    • Research Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Natural Dye Sensitizer for Grӓtzel Cells: Sepia Melanin

    Thumbnail
    View/Open
    Research Article (367.8Kb)
    Date
    2015
    Author
    Mbonyiryivuze, Agnes
    Omollo, Isaiah
    Ngom, Balla Diop
    Mwakikunga, Bonex
    Dhlamini, Simon Mokhotjwa
    Park, E.
    Maaza, Malik
    Metadata
    Show full item record
    Abstract
    The efficiency of Grätzel cell can be further improved by the anchoring groups, such as COOH to be adsorbed onto the TiO2 surface with a large electronic coupling. Some of the most efficient sensitizers are synthetic dyes including transition metal coordination compounds such as Ruthenium polypyridyl complexes because of their highly efficient metal-to-ligand charge transfer, suitable ground and excited state energy levels with respect to titanium dioxide conduction band energy. They also have intense and wide range absorption in whole visible range. Even if they present such attractive features, their synthesis process is costly and complicated and they are not environment friendly because they contain heavy rare metals which are undesirable from the point of view of environmental conservation aspects. Natural dye can be the best alternative as they have acceptable efficiency in comparison to that one of transition coordination compounds and their extraction can be done by simple procedures from flowers, leaves, fruits, animals and other natural products. Melanin as the major component Sepia Officinalis ink pigment cause strong interactions with the hydroxyl groups of a TiO2. Melanin possesses a broad band absorbance in UV and visible range up to infrared. It also possesses the COOH and OH groups which would be free to bind to the surface of TiO2. Moreover, melanin polymer has interesting properties such as a considerable spectral absorbance width due to the high degree of conjugation of the molecule. This paper reports results from X-ray diffraction (XRD), UV-Vis as well as Raman spectroscopy of sepia melanin for Grätzel cell application.
    URI
    DOI:10.12691/pmc-3-1-1
    http://dspace.nm-aist.ac.tz/handle/123456789/213
    Collections
    • Research Articles

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV
     

     

    Browse

    All PublicationsCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Nelson Mandela-AIST copyright © 2021  DuraSpace
    Theme by 
    Atmire NV