Show simple item record

dc.contributor.authorMWAIMU, MARCO
dc.contributor.authorMAJHAM, MIKE
dc.contributor.authorRONOH, KENNEDY
dc.contributor.authorMICHAEL, KISANGIRI
dc.contributor.authorSINDE, RAMADHANI
dc.date.accessioned2023-09-13T11:00:46Z
dc.date.available2023-09-13T11:00:46Z
dc.date.issued2022-11-11
dc.identifier.urihttps://doi.org/ 10.1109/ACCESS.2022.3220628
dc.identifier.urihttps://dspace.nm-aist.ac.tz/handle/20.500.12479/1998
dc.descriptionThis research article was published by IEEE Access 2022en_US
dc.description.abstractIn recent years, the Television White Space has attracted the interest of many researchers due to its propagation characteristics obtainable between 470MHz and 790MHz spectrum bands. However, aggre- gate interference increase when secondary users in wireless network increase. Aggregate interference on the side of Primary Users has been extensively scrutinized. Therefore, resource allocation (power and spectrum) is crucial when designing the Television White Space network to avoid interferences from Secondary Users to Primary Users and among Secondary Users themselves. This study proposes a resource allocation model that uses joint power and spectrum hybrid Particle Swarm Optimization, Firefly, and Genetic algorithm for reducing the aggregate interference among Secondary Users. The algorithm is integrated with the admission control algorithm so that; there is a possibility of removing some of the Secondary Users in the network whenever the Signal to Noise Ratio threshold for Secondary and Primary Users is not met. We considered an infeasible system whereby all Secondary and Primary Users may not be supported simultaneously. Metrics such as Primary User Signal-to-noise ratio, sum throughput, and secondary user signal-to-noise ratio less than the threshold used to compare the performance of the proposed algorithm and the results show that PSOFAGA with effective link gain ratio admission control has the best performance compared to particle swarm optimization, genetic algorithm, firefly algorithm, and PSOFAGA algorithmen_US
dc.language.isoenen_US
dc.publisherIEEE Accessen_US
dc.subjectAdmission control algorithmen_US
dc.subjectCognitive radio networksen_US
dc.subjectEffective link gain ratio algorithmen_US
dc.subjectTV whitespace.en_US
dc.titleImproved Resource Allocation Model for Reducing Interference Among Secondary Users in TV White Space for Broadband Servicesen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record